- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Основные постулаты и соотношения теории Бора.
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Линейный гармонический осциллятор.
- •Контрольная работа №3 для студентов-заочников
- •Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Примеры физических систем, в которых могут осуществляться гармонические колебания.
- •Основные законы геометрической оптики.
- •Контрольная работа №3 для студентов-заочников
- •Явление интерференции света. Способы получения интерференционной картины в оптике. Расчёт интерференционной картины от двух источников. Применение явления интерференции.
- •Основные постулаты и соотношения теории Бора.
- •Контрольная работа №3 для студентов-заочников
- •1. Вынужденные механические колебания. Дифференциальное уравнение вынужденных колебаний, его решения. Условия резонанса амплитуды скорости и амплитуды смещения.
- •2. Явление дифракции света. Дифракция Френеля и Фраунгофера. Дифракционная решётка. Применение явления дифракции.
- •3. Линейный гармонический осциллятор.
- •Контрольная работа №3 для студентов-заочников
- •Вынужденные электрические колебания в последовательном колебательном контуре. Дифференциальное уравнение вынужденных колебаний, его решения. Закон Ома. Условия резонанса амплитуды силы тока.
- •Явление дисперсии света. Применение дисперсии.
- •Временное уравнение Шредингера.
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Основные постулаты и соотношения теории Бора.
- •Контрольная работа №3,4 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Линейный гармонический осциллятор.
- •Контрольная работа №3 для студентов-заочников
- •Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Примеры физических систем, в которых могут осуществляться гармонические колебания.
- •Основные законы геометрической оптики.
- •Корпускулярно-волновой дуализм материи. Формула Луи де Бройля.
- •Контрольная работа №3 для студентов-заочников
- •Затухающие свободные колебания. Дифференциальное уравнение затухающих колебаний, его решения. Примеры физических систем, в которых могут осуществляться затухающие колебания.
- •Явление интерференции света. Способы получения интерференционной картины в оптике. Расчёт интерференционной картины от двух источников. Применение явления интерференции.
- •Основные постулаты и соотношения теории Бора.
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Основные постулаты и соотношения теории Бора.
- •Контрольная работа №3 для студентов-заочников
- •Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Примеры физических систем, в которых могут осуществляться гармонические колебания.
- •Основные законы геометрической оптики.
- •Корпускулярно-волновой дуализм материи. Формула Луи де Бройля.
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Контрольная работа №3 для студентов-заочников
- •Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Примеры физических систем, в которых могут осуществляться гармонические колебания.
- •Основные законы геометрической оптики.
- •Корпускулярно-волновой дуализм материи. Формула Луи де Бройля.
- •Вычислить длину волны де Бройля электрона, прошедшего ускоряющую разность потенциалов 1000в.
Контрольная работа №3 для студентов-заочников
Вариант 10
Вектор плотности потока энергии Умова–Пойнтинга. Плотность энергии электромагнитной волны.
Искусственная анизотропия вещества. Фотоупругость. Эффекты Керра, Коттона-Мутона, Фарадея.
Линейный гармонический осциллятор.
Разность потенциалов на обкладках конденсатора в колебательном контуре изменяется по закону U=30sin100πt. Электроёмкость конденсатора 42,5мкФ. Определить период собственных колебаний индуктивность, энергию контура максимальную силу тока, текущего по катушке индуктивности.
Определить энергию, переносимую плоской синусоидальной электромагнитной волной, распространяющейся в вакууме, за 1,5с сквозь поверхность площадью 20м2, расположенную перпендикулярно направлению распространения волны. Амплитуда напряжённости электрического поля волны 5мВ/м. Период волны T<<t.
Красная граница фотоэффекта для цезия λ0=653 нм. Определить скорость фотоэлектронов при облучении цезиевого фотокатода светом с длиной волны 490 нм.
Вычислить длину волны де Бройля протона, прошедшего ускоряющую разность потенциалов 120000В.
Контрольная работа №3 для студентов-заочников
Вариант 11
Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Примеры физических систем, в которых могут осуществляться гармонические колебания.
Основные законы геометрической оптики.
Корпускулярно-волновой дуализм материи. Формула Луи де Бройляые.
Разность потенциалов на обкладках конденсатора в колебательном контуре изменяется по закону U=500sin1000πt. Электроёмкость конденсатора 2,0мкФ. Определить период собственных колебаний индуктивность, энергию контура максимальную силу тока, текущего по катушке индуктивности.
Определить энергию, переносимую плоской синусоидальной электромагнитной волной, распространяющейся в вакууме, за 12с сквозь поверхность площадью 0,1м2, расположенную перпендикулярно направлению распространения волны. Амплитуда напряжённости электрического поля волны 35мВ/м. Период волны T<<t.
Красная граница фотоэффекта для цезия λ0=653 нм. Определить скорость фотоэлектронов при облучении цезиевого фотокатода светом с длиной волны 500 нм.
Вычислить длину волны де Бройля электрона, прошедшего ускоряющую разность потенциалов 1200В.
Контрольная работа №3 для студентов-заочников
Вариант 12
Затухающие свободные колебания. Дифференциальное уравнение затухающих колебаний, его решения. Примеры физических систем, в которых могутосуществляться затухающие колебания.
Явление интерференции света. Способы получения интерференционной картины в оптике. Расчёт интерференционной картины от двух источников. Применение явления интерференции.
Основные постулаты и соотношения теории Бора.
Разность потенциалов на обкладках конденсатора в колебательном контуре изменяется по закону U=350sin1000πt. Электроёмкость конденсатора 52,5мкФ. Определить период собственных колебаний индуктивность, энергию контура максимальную силу тока, текущего по катушке индуктивности.
Определить энергию, переносимую плоской синусоидальной электромагнитной волной, распространяющейся в вакууме, за 1с сквозь поверхность площадью 10м2, расположенную перпендикулярно направлению распространения волны. Амплитуда напряжённости электрического поля волны 45мВ/м. Период волны T<<t.
Красная граница фотоэффекта для цезия λ0=653 нм. Определить скорость фотоэлектронов при облучении цезиевого фотокатода светом с длиной волны 510 нм.
Вычислить длину волны де Бройля электрона, прошедшего ускоряющую разность потенциалов 55000В.
