
- •6. Векторы. Операции над векторами (сложение, вычитание, умножение на число), n-мерный вектор. Понятие о векторном пространстве и его базисе.
- •7. Собственные векторы и собственные значения матрицы. Характеристическое уравнение матрицы.
- •8. Система лин.Ур-ний:
- •9. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.
- •10. Системой m линейных уравнений с n неизвестными называется система вида
- •13. Вектор – это направленный отрезок прямой.
- •14. Скалярным произведением двух векторов называется действительное число, равное произведению длин умножаемых векторов на косинус угла между ними.
- •17. Скалярным квадратом n-мерного вектора называется скалярное произведение вектора на себя:
- •21. Наиболее просто устроены матрицы диагонального вида . Возникает вопрос, нельзя ли найти базис, в котором матрица линейного оператора имела бы диагональный вид. Такой базис существует.
- •24. Квадратичная форма называется канонической, если все т. Е.
- •Приведение квадратичных форм к каноническому виду
- •25. Действительная квадратичная форма является положительно-определенной тогда и только тогда, когда она принимает положительные значения при любой ненулевой системе значений переменных.
- •26. Уравнение линии на плоскости. Точка пересечения двух линий. Основные виды уравнений прямой на плоскости (одно из них вывести).
- •29. Каноническое уравнение гиперболы:
- •31. Общие уравнения прямой, как линии пересечения двух плоскостей
- •Условия параллельности и перпендикулярности прямой и плоскости в пространстве
25. Действительная квадратичная форма является положительно-определенной тогда и только тогда, когда она принимает положительные значения при любой ненулевой системе значений переменных.
Матрицей является положительно-определенной тогда и только тогда, когда все ее главные миноры положительны.
Действительная квадратичная форма называется отрицательно-определенной, если она является невырожденной и приводится к нормальному виду, содержащему только отрицательные квадраты всех переменных; эту форму можно привести к виду
Квадратичная форма является отрицательно-определенной тогда и только тогда, когда ее главные миноры четного порядка положительны, а нечетного — отрицательны.
Положительно-определенные и отрицательно-определенные квадратичные формы называются знакоопределенными квадратичными формами.
Критерий Сильвестра определяет, является ли симметричная квадратная матрица положительно (отрицательно, неотрицательно) определённой.
Пусть квадратичная форма имеет в каком-то базисе матрицу
Тогда
эта форма положительно определена,
тогда и только тогда когда все её главные
(угловые) миноры
положительны.
Форма отрицательно определена, если и
только если знаки
чередуются,
причём
.
Здесь главными минорами
матрицы
называются
определители вида
Для неотрицательно определённых матриц критерий действует только в одну сторону: если форма неотрицательно определена, то главные миноры неотрицательны. Обратное неверно. Например, матрица
не
является неотрицательно определённой —
так как, например,
для
.
В то же время все её главные миноры равны
0, то есть неотрицательны.
26. Уравнение линии на плоскости. Точка пересечения двух линий. Основные виды уравнений прямой на плоскости (одно из них вывести).
Опр. Урав-ем линии(кривой) на плоскости Oxy наз-ся урав-е, кот.удовлетворяют координаты x и y каждой точки данной линии и не удовлет.координаты любой точки, не лежащей на этой линии.
Точка пересеч-я двух линий: система двух прямых A1x+B1y+C1=0;A2x+B2y+C2=0 – если прямые не параллельны, т.е. А1/А2 НЕ РАВНО В1/В2, то реш-е системы дает единственную точку пересеч-я прямых.
Осн.виды урав-ий прямой на плос-ти: 1)Урав-е пря-й, проход-щей через данную точку в данном направ-и: y-y1=k(x-x1). 2)Если в урав-и k-производное число,то это урав-е определяет пучок прямых,проходящих через точку M1(x1, y1), кроме прямой, параллельной оси Oy и не имеющей углового коэффициента.При-р:урав-е пучка прямых, проходящ-х через точку A(3;-2), имеет вид y+2=k(x-3). 3)Урав-е прямой, проходящ-й через две данные точки: угловой коэф-т прямой:k=y2-y1/x2-x1. y-y1=y2-y1/x2-x1 * (x-x1). 4) Урав-е прямой в отрезках наз-ся урав-е x/a +y/b=1. 5) Общее урав-е прямой и его исследование: При любых А,В(не равных одновременно нулю) и С урав-е (Ах+By+C=0) есть урав-е некоторой прямой линии на плоскости Oxy. Ах+By+C=0 наз-ся общим урав-ем прямой.
27. ) Общее урав-е прямой и его исследование: При любых А,В(не равных одновременно нулю) и С урав-е (Ах+By+C=0) есть урав-е некоторой прямой линии на плоскости Oxy. Ах+By+C=0 наз-ся общим урав-ем прямой.
Условие параллельности прямых заключается в равенстве их угловых коэффициентов.
tgφ1=tgφ2 или k1=k2
Условие перпендикулярности прямых заключается в том, что произведение их угловых коэффициентов равно –1
k1k2=-1
28. Кривая второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида
в
котором по крайней мере один из
коэффициентов
отличен
от нуля.
Каноническое уравнение эллипса.
Теорема. В канонической для эллипса системе координат уравнение эллипса имеет вид:
.
(4)
Доказательство. Доказательство проведем в два этапа. На первом этапе мы докажем, что координаты любой точки, лежащей на эллипсе удовлетворяют уравнению (4). На втором этапе мы докажем, что любоерешение уравнения (4) дает координаты точки, лежащей на эллипсе. Отсюда будет следовать, что уравнению (4) удовлетворяют те и только те точки координатной плоскости, которые лежат на эллипсе. Отсюда и изопределения уравнения кривой будет следовать, что уравнение (4) является уравнением эллипса.
Геометрический
смысл параметра
-
расстояние от начала координат до
плоскости. Вектор нормали направлен в
сторону полуплоскости, в которой нет
начала координат.