- •1.Механические гармонические колебания, их характеристики и простейшие колебательные системы.
- •2.Доказать возможность гармонических колебаний для физического маятника и определить все их характеристики и необходимые условия.
- •3. Электрические гармонические колебания в идеальном контуре, их свойства и характеристики.
- •4. Сложение гармонических колебаний параллельных и перпендикулярных направлений.
- •5. Затухающие механические и электрические колебания, основные характеристики и связь между ними.
- •6.Получить выражения для времени релаксации, логарифмического декремента затухания и добротности колебательной системы.
- •7.Вынужденные колебания, основные закономерности и характеристики.
- •8.Используя метод векторных диаграмм, получить выражения для амплитуды и фазы установившихся вынужденных колебаний.
- •9. Резонанс смещения и скорости смещения, основные закономерности и определяющие параметры.
- •10.Переменный электрический ток, квазистационарность, векторная диаграмма.
- •11.Получить выражение для добротности колебательного контура в случае вынужденных колебаний (переменного тока).
- •12 Автоколебания и основные их закономерности.
- •13. Параметрический резонанс и его основные закономерности.
- •14. Упругие волны в сплошной среде, основные свойства, закономерности и характеристики.
- •15. Волновое уравнение для упругих волн и его общее решение.
- •20. Волновой пакет. Дисперсия упругих волн.
- •21. Получить выражение для групповой скорости в случае простейшего волнового пакета и связи групповой скорости с фазовой.
- •22 . Дисперсия волн на глубокой воде; капиллярных волн.
- •23. Звуковые волны. Элементы акустики. Энергетическое воздействие ультразвука.
- •28. Получить в одномерном случае волновое уравнение для электромагнитных волн и выражение для фазовой скорости.
- •29. Эффект Доплера для электромагнитных волн. Продольный и поперечный эффекты.
- •30. Дипольное излучение, его характеристики и закономерности.
- •31. Когерентность света. Параметры когерентности. Оценки для типичных случаев.
- •32. Интерференция света. Параметры интерференции. Возможность наблюдения.
- •33. Рассчитать разность хода, координаты максимумов и минимумов, расстояние между интерференционными полосами и ширину полос в опыте Юнга.
- •35. Дифракция света. Метод зон Френеля. Критерий различных видов дифракции.
- •36. Дифракция Френеля. Простейшие дифракционные задачи.
- •37. Дифракция Фраунгофера. Дифракция на одной щели и на дифракционной решетке.
- •38. Вывести условия главных минимумов, главных максимумов, дополнительных минимумов и определить углы границ центрального максимума для дифракционной решетки.
- •39. Разрешающая способность оптических и спектральных приборов.
- •40. Рассчитать необходимый диаметр объектива оптической системы искусственного спутника для возможности фотографирования деталей заданных размеров.
- •41. Получить выражение для разрешающей способности дифракционной решетки как спектрального прибора.
- •42. Дифракция рентгеновских лучей на кристаллах. Рентгеновская спектроскопия и рентгеноструктурный анализ.
- •43. Основы голографии. Основные виды и механизм записи и воспроизведения изображения.
- •44.Поглощение и дисперсия света в веществе. Электронная теория.
- •46. Вывести условия, при которых происходит излучение Вавилова-Черенкова, и привести расчет соответствующего угла.
- •47.Поляризация света. Закон Малюса. Поляризаторы и анализаторы.
- •48.Поляризация света. Явление Брюстера. Стопа Столетова.
- •50.Двойное лучепреломление и его свойства.
- •51.Обосновать явление двойного лучепреломления с помощью свойств обыкновенного и необыкновенного лучей, используя принцип Гюгенса.
- •52.Искусственная оптическая анизотропия. Явление Керра.
- •53.Тепловое излучение, его свойства, характеристики и законы.
- •55.Формулы Рэлея-Джинса и Планка, связь и основания для их вывода.
- •56.С помощью формулы Планка вывести закон Стефана-Больцмана для теплового излучения.
- •57.С помощью формулы Планка вывести закон смещения Вина для теплового излучения.
- •59.Внешний фотоэффект, его вах, законы и механизм.
- •60.Уравнение Эйнштейна для фотоэффекта.
- •61.Давление света, его механизм и закономерности.
- •65.Опыт Резерфорда, планетарная модель атома и её недостатки (фатальные).
- •66.Модель Бора для водородоподобных атомов.
- •67.Вывести соотношения между различными видами энергии электрона для водородоподобного атома по теории Бора.
- •68.Получить выражения для радиуса отбиты и скорости электрона на ней для водородоподобного атома по теории Бора.
- •69.Рассчитать энергию ионизации, полную энергию электрона и получить сериальную формулу для спектра водородоподобного атома по теории Бора.
- •70.Корпускулярно-волновой дуализм свойств света, основные проявления, закономерности и интерпретация.
- •71.Рассчитать фазовую и групповую скорости волн де Бройля в классическом случае и в релятивистском случае.
- •72.Соотношения неопределенностей, виды, обоснования и интерпретация.
- •73.Волновая функция и основные, присущие ей закономерности. Уравнения Шредингера.
- •74.Свободная частица в квантовой механике, точное решение, параметры бегущих волн де Бройля.
- •75. Частица в одномерной потенциальной яме.
- •76.Получить решения уравнения Шредингера для частицы в одномерной потенциальной яме и выражение для энергии частицы. Сделать анализ полученных соотношений.
- •77.Получить выражение для энергии частицы в одномерной потенциальной ямы, описав её состояние как соответствующую стоячую волну.
- •79.Туннельный эффект.
- •81.Атом водорода в квантовой механике.
- •83.Принцип неразличимости тождественных частиц. Принцип Паули.
- •84.Периодическая система элементов, базовые положения и основные закономерности.
- •87.Вынужденное излучение и усиление света в веществе. Инверсное состояние вещества.
- •88.Оптические квантовые генераторы. Свойства лазерного излучения.
- •89.Строение и свойства атомного ядра. Основные характеристики.
- •90.Ядерные силы и их основные свойства. Энергия связи ядра и дефект массы.
- •92.Радиоактивность, основные закономерности и параметры.
- •93.Получить связь между постоянной радиоактивного распада, периодом полураспада и средним временем жизни радиоактивного ядра.
- •97.Ядерные реакции, их основные закономерности, характеристики и свойства.
- •98.Реакции деления атомного ядра, основные закономерности и применение.
- •100.Термоядерные реакции, их виды, механизм и оценка энергии.
- •104.Квантовая теория теплоемкости валентных электронов и газов.
- •105.Квантовая теория теплоемкости твердых тел. Фононы.
- •106.Зонная теория твердых тел. Отличие в строение металлов, диэлектриков и полупроводников.
- •107.Чистые и примесные полупроводники, их зонные структуры и основные свойства.
- •108.Доказать, что у чистых полупроводников уровень Ферми находится посредине запрещенной зоны.
- •109.Вывести формулу для зависимости удельной проводимости чистого полупроводника от температуры.
35. Дифракция света. Метод зон Френеля. Критерий различных видов дифракции.
Дифракция
света – огибание волнами препятствий,
встречающихся у них на пути. Явление
дифракции объясняется с помощью принципа
Гюйгенса: каждая точка, до которой
доходит волна, является центром вторичных
волн, а огибающая их даёт положение
волнового фронта в следующий момент
времени. Френель доказал прямолинейность
распространения света, рассмотрев
взаимную интерференцию вторичных волн,
применив метод зон Френеля. *рисунок*
а – расстояние от источника до волновой
поверхности; b
– расстояние от волновой поверхности
до точки наблюдения. λ<<а, λ<<b,
.
Условие применения геометрической
оптики:
,
где R
– размер препятствия, b
– расстояние от препятствия до точки
наблюдения. Условие дифракции Френеля:
.
Условие дифракции Фраунгофера:
.
36. Дифракция Френеля. Простейшие дифракционные задачи.
Дифракция
Френеля – наблюдается в сходящихся
лучах, .т.е. точка наблюдения (экран)
расположена на конечном расстоянии от
препятствия. Дифракция на круглом
отверстии:
- нечётные,
- чётные. Если отверстие открывает
нечётное число зон Френеля – в центре
max,
если чётное – в центе min.
Дифракция на диске
.
В точке Р всегда наблюдается max
(если препятствие слишком велико, то
точка Р будет в области геометрической
тени).
37. Дифракция Фраунгофера. Дифракция на одной щели и на дифракционной решетке.
Дифракция
Фраунгофера: наблюдается в параллельных
лучах, т.е. точка наблюдения (экран)
расположен очень далеко от препятствия.
Дифракция на щели: *рисунок1* Условие
max:
,
к=1,2.. Условие min:
,
к=1,2..
Дифракционная
решётка – система параллельных щелей,
одинаковой ширины, расположенных на
одинаковом расстоянии друг от друга.
Дифракция на решётке: *рисунок2* Условие
главных max:
,
к=0,1,2.. Условие главных min:
,
к=1,2.. Условие дополнительных min
,
m=0,1,2..N-1,N+1…2N-1,2N+1…
38. Вывести условия главных минимумов, главных максимумов, дополнительных минимумов и определить углы границ центрального максимума для дифракционной решетки.
=>
Разность фаз.
.
Интенсивность результир. от решётки:
,
N
– число щелей,
-
интенсивность создаваемая одной щелью.
,
- интенсивность с середины до картины,
- интенсивность в точке, положение
которой определяется углом φ.
.
,
при
,
к=1,2… - минимум. При
,
l=0,1,2…
- максимум . Дополнительные минимумы:
,
m=0,1,2..N-1,N+1…2N-1,2N+1…
39. Разрешающая способность оптических и спектральных приборов.
Разрешающая
способность спектрального прибора –
отношение длины волны света к минимальной
разности длин волн световых пучков,
изображения которых могут быть различимы
между собой на экране.
.
Разрешающая способность оптического
прибора – величина, обратная минимальному
угловому расстоянию между двумя
точечными источниками, изображения
которых различимы между собой на экране.
.
*рисунок1* *рисунок2*
