
- •Введение Структура гибкой производственной системы
- •1. Классификация устройств программного управления
- •2. Принципы построения микропроцессорных систем
- •3. Способы внутрисистемной организации мультимикропроцессорных систем
- •Устройства числового программного управления станками и системы управления промышленными роботами
- •4. 1. Устройство числового программного управления fms-3000
- •4.2. Учпу Маяк600
- •4.3. Система управления рб 242
- •4.4. Су «сфера-36»
- •Микроконтроллеры cisc и risc архитектуры
- •5.1. Выбор микроконтроллера
- •5. 2. Микроконтроллер км1816ве51
- •Устройство управления и синхронизации
- •Порты ввода/вывода информации
- •Таймеры/счётчики
- •Последовательный порт
- •Работа уапп в мультимикроконтроллерных системах
- •Система прерываний
- •Приоритеты прерываний при поллинге
- •Особенности запросов внешних прерываний
- •Программирование мк51 Методы адресации
- •Система команд семейства mк-51
- •Типовая схема построения су на базе мк51
3. Способы внутрисистемной организации мультимикропроцессорных систем
ММПС делятся на две группы: распределенные (децентрализованные) системы, сосредоточенные (централизованные) системы.
Распределенные ММПС содержат территориально рассредоточенные по всему объекту управления мЭВМ, связь между которыми осуществляется по специальным линиям связи (последовательным каналам).
Сосредоточенные ММПС работают по принципу параллельной обработки данных и предназначаются в основном для обеспечения высокой производительности систем. В сосредоточенных системах все блоки расположены в одной стойке и используют одну общую операционную систему.
Для сосредоточенных ММПС характерны три основных способа организации внутрисистемных связей:
- с перекрестной коммутацией каналов обмена (рис. 3.1);
- с многошинными связями (рис. 3.2);
- с общей шиной (рис. 3.3).
В ММПС с перекрестной коммутацией межпроцессорный обмен реализуется с помощью матричного коммутатора. Коммутация может осуществляться в каждом коммутирующем узле (КУ) матричной системы, обеспечивая физическое подсоединение любого модуля памяти (МП) к любому процессору (ПРЦ). Возможна организация нескольких одновременно действующих путей передачи информации в матрице (параллельные процессы). Система имеет наибольшие аппаратные затраты на организацию внутрсистемных связей, но и обладает наиболее высокой пропускной способностью. Выход из строя части коммутатора не приводит к отказу системы, так как функции процессоров, коммутируемых этой частью, могут быть распределены между другими процессорами системы. Данные системы используются там, где необходимо получить максимальную производительность при вычислениях либо управлении.
Рис. 3.1. ММПС с перекрёстной коммутацией
Рис. 3.2. ММПС с многошинными связями
В ММПС с многошинными связями каждый процессорный модуль имеет доступ к любому модулю памяти при помощи собственных шин. Каждый модуль памяти должен быть многовходовым (многопортовые ОЗУ) и содержать схему арбитража для разрешения конфликтов при одновременном обращении к нему нескольких процессоров. Пропускная способность схем с многошинными связями ниже, чем с матричным коммутатором, но у них меньше и аппаратные затраты. Наращиваемость ограничивается числом входов в модулях памяти. Система не теряет работоспособности при выходе из строя отдельных шин. В данной схеме также возможна параллельная передача данных.
ММПС с общей шиной отличаются наибольшей простотой организации связей и наименьшими аппаратными затратами. Они характеризуются высокой степенью модульности и хорошими возможностями наращивания. Основными недостатками таких систем являются ограниченная пропускная способность общей шины и невысокая надежность, так как выход из строя общей шины приводит к отказу всей системы. Структуры с общей шиной (ШД) в настоящее время получили наибольшее распространение.
ММПС с общими памятью и внешними устройствами наиболее просты и имеют наименьшие затраты оборудования (рис. 3.4). Каждый ПРЦ имеет доступ к любому модулю памяти МП, к любому внешнему устройству, в том числе и к программам операционной системы, осуществляющей общее управление всеми аппаратными и программными средствами системы и обеспечивающей взаимодействие, как между процессорами, так и между реализуемыми в них процессами. Быстродействие ММПС с такой организацией наименьшее и ограничивается пропускной способностью ОШ.
В структурах ММПС с локальной памятью (ЛМП) общие поля памяти (ОМП) могут быть объединены с локальной памятью или отделены физически.
Структура с локальной памятью (рис. 3.5) минимизирует конфликтные ситуации при запросе общих ресурсов (ОШ, общей памяти), так как значительная часть программ и данных продублирована. ОШ служит только для межпроцессорного обмена в процессе взаимодействия программных модулей, выполняемых на разных ПРЦ. Такая структура обладает потенциально высоким быстродействием, высокой степенью однородности и наращиваемостью.
Рис. 3.3. ММПС с общей шиной Рис. 3.4. ММПС с общими памятью и
внешними устройствами
Рис. 3.5. ММПС с объединёнными локальной и общей памятью процессоров
Физически отдельная ОМП (общая память) может располагаться как на шинах ПРЦ, так и на ОШ (рис. 3.6). Наибольшим быстродействием обладают структуры, в которых общая память физически отделена и расположена на шинах ПРЦ, так как в этих случаях отсутствуют конфликты при одновременных обращениях одного из ПРЦ в область локальной памяти и других ПРЦ в область общей памяти.
Загрузка общей шины в структуре с физически отдельными - локальной и общей памятью невелика, так как для обмена двух ПРЦ одним словом данных требуется один цикл шины при бесконфликтном обмене. Если область общей памяти организована подключением к ОШ, то для подобного обмена требуются два цикла шины: один для записи данных ПРЦ - источником, второй - для считывания этих данных ПРЦ - приемником.
Рис. 3.6. ММПС с физически отдельными локальной и общей памятью
Системы распределенной обработки информации (локальные сети) используются для передачи информации на сравнительно небольшие расстояния (в пределах завода, учреждения, цеха, отдела).
Локальная сеть при помощи канала связи может объединять от десятков до сотен абонентских узлов, включающих мЭВМ, внешнее ЗУ, интерфейсные схемы, монитор, печатающие устройства, измерительные приборы и т.д.
Локальные сети используются при автоматизации делопроизводства, технологических и производственных процессов; для создания информационно-справочных, контрольно-измерительных систем, гибких автоматизированных производств.
Объединение мЭВМ (персональных мЭВМ) в ЛВС создает ряд преимуществ в использовании вычислительной техники по отношению к одной мЭВМ:
- ЛВС предоставляют возможность применения отдельных дорогостоящих устройств, подключенных к одной из мЭВМ сети, многими пользователями (графопостроители большого формата, устройства цветной печати высокого качества, накопители большой емкости).
- ЛВС обеспечивают совместное использование банков данных большого размера, размещаемых на НМД большой емкости.
- ЛВС позволяют реализовать безбумажную технологию обработки документации с передачей по каналам связи (системы САПР).
- ЛВС обеспечивают оперативный обмен текстами программ и другой управляющей информацией между отдельными мЭВМ сети, например, при реализации ГПС.
Локальные сети различают по следующим основным характеристикам: топологии (конфигурации) сети, физической среде передачи, методам управления передачи (методам доступа к физической среде передачи).
Рис. 3.7. Магистральная структура ЛВС
Топология сети определяет общую структуру расположения абонентских узлов и линий связи между ними. Наиболее используемыми конфигурациями (топологиями) ЛВС являются магистральные, кольцевые и звездообразные.
В сетях с магистральной структурой данные, передаваемые любой мЭВМ, равнодоступны для остальных мЭВМ (рис. 3.7).
В сетях с кольцевой структурой информация передаётся в одном направлении к соседней мЭВМ, через которую она транслируются в следующую мЭВМ и т.д. (рис. 3.8).
В звездообразной конфигурации в качестве центрального узла (узла коммутации) может служить мЭВМ, осуществляющая коммутацию данных между мЭВМ сети (рис. 3.9).
Любая мЭВМ сети должна иметь в своем составе устройства сопряжения с сетью - сетевой адаптер.
В качестве физической среды передачи данных в сетях применяются витые пары проводников, коаксиальный кабель и волоконно-оптические линии связи.
Рис. 3.8. Кольцевая структура ЛВС
Рис. 3.9. Звездообразная структура ЛВС