
- •Вопрос 5. Переменные резисторы, конструктивные особенности и основные параметры и характеристики. 6
- •Вопрос 6. Конденсаторы, разновидности конденсаторов, обозначение, маркировка и допускаемые нормализованные отклонения. 7
- •1 Вопрос. Классификация резисторов, маркировка, обозначение, допускаемые нормализованные отклонения.
- •2 Вопрос. Основные параметры и характеристики резисторов.
- •3 Вопрос. Терморезисторы, основные параметры и характеристики.
- •4 Вопрос. Варисторы и позисторы, принцип работы, основные параметры и характеристики.
- •Вопрос 5. Переменные резисторы, конструктивные особенности и основные параметры и характеристики.
- •Вопрос 6. Конденсаторы, разновидности конденсаторов, обозначение, маркировка и допускаемые нормализованные отклонения.
- •7 Вопрос. Основные параметры постоянных конденсаторов.
- •8 Вопрос. Переменные и подстроечные конденсаторы, конструктивные особенности.
- •9 Вопрос. Катушки индуктивности, особенности конструкции и способы изготовления.
- •10 Вопрос. Основные параметры и характеристики катушек индуктивности.
- •11. Особенности работы трансформаторов и их классификация.
- •12. Магнитопроводы трансформаторов и их конструктивные особенности.
- •13. Электропроводность полупроводников, основные положения теории электропроводности.
- •14. Полупроводниковые диоды, особенности работы и обозначения.
- •15. Выпрямительные и универсальные диоды, конструктивные особенности, параметры и характеристики.
- •16. Импульсные диоды, особенности работы, параметры и характеристики.
- •17. Принцип работы стабилитронов, основные параметры и характеристики и схема включения.
- •18. Варикапы, схема включения, принцип работы и основные параметры и характеристики, область использования.
- •19. Туннельные и обращаемые диоды основные параметры и характеристики.
- •20. Конструктивные особенности свч диодов, классификация и область использования.
- •21.Биполярные транзисторы, физические процессы и их обозначение.
- •22.Активный режим работы бт с об, входные и выходные характеристики и параметры.
- •23 Активный режим работы бт с оэ, входные и выходные характеристики и параметры.
- •24. Схема включения биполярного транзистора в режиме усиления тока (эмиттерный повторитель). Особенности работы.
- •25. Принцип работы биполярного транзистора с общей базой при подаче синусоидального напряжения.
- •26. Принцип работы биполярного транзистора с общим эмиттером при подаче синусоидального напряжения.
- •27.Динамический режим работы биполярного транзистора.
- •28.Работа биполярного транзистора с вч сигналами
- •29. Особенности конструкции и структуры свч-транзисторов
- •30.Классификация полевых транзисторов, отличительные особенности их работы.
- •]Транзисторы с управляющим p-n переходом
- •Транзисторы с изолированным затвором (мдп-транзисторы)
- •31)Полевые транзисторы с управляющим р-п переходом, устройство и принцип действия.
- •32)Статические параметры и характеристики полевых транзисторов управляющим р-п переходом.
- •33)Особенности работы мпд транзисторов со встроенным каналом.
- •34)Статические характеристики и параметры мдп транзисторов со встроенным каналом.
- •35)Мдп транзисторы с индуцированным каналом, физические процессы, принцип работы.
- •36)Работа полевых транзисторов при малых синусоидальных сигналах.
- •40)Динамический режим работы полевых транзисторов.
- •41. Особенности работы полевых транзисторов в свч диапазоне.
- •43. Тринисторы, принцип работы, основные параметры и характеристики.
- •45. Излучающие полупроводниковые приборы, параметры и характеристики.
- •46. Основные сведения об электровакуумных приборах и физические основы их работы.
- •47. Двухэлектродные лампы, физические процессы.
- •48. Статические характеристики и параметры двухэлектродных ламп.
- •49. Электровакуумный диод в режиме нагрузки
- •50. Трехэлектродные лампы, физические процессы, основные параметры
- •51. Статические характеристики трехэлектродных ламп Работа трехэлектродной лампы с нагрузкой в анодной цепы.
- •53) 53. Работа трехэлектродных ламп в свч диапазоне.
- •54) Тетроды,особенности работы,статические параметры и характеристики.
- •55) Пентоды, статические параметры и характеристики.
- •56. Работа пентода в динамическом режиме с нагрузкой в анодной цепи
- •57. Электровакуумные фотоэлектронные приборы
- •58. Элекктронно-лучевые трубки, классификация, принцип работы.
- •59. Операционные усилители, функциональная схема, особенности работы.
- •60. Параметры и характеристики операционных усилителей.
33)Особенности работы мпд транзисторов со встроенным каналом.
В связи с наличием встроенного канала в таком МДП-транзисторе при нулевом напряжении на затворе (см. рис. 2, б) поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности (рис. 3).
Статические характеристики передачи (рис. 3, b) выходят из точки на оси абсцисс, соответствующей напряжению отсечки UЗИотс, то есть напряжению между затвором и истоком МДП-транзистора со встроенным каналом, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.
Формулы
расчёта
в
зависимости от напряжения UЗИ
1.
Транзистор закрыт
Пороговое
значение напряжения МДП транзистора
2.
Параболический участок.
-удельная крутизна транзистора.
3. Дальнейшее увеличение U3u приводит к переходу на пологий уровень.
—
Уравнение
Ховстайна.
МДП-транзисторы со встроенным каналом
Рис. 3. Выходные статические характеристики (a) и статические характеристики передачи (b) МДП-транзистора со встроенным каналом.
В данной схеме в качестве нелинейного элемента используется МДП транзистор с изолированным затвором и индуцированным каналом
34)Статические характеристики и параметры мдп транзисторов со встроенным каналом.
Полупроводниковые приборы, работа которых основана на модуляции сопротивления полупроводникового материала поперечным электрическим полем, называют полевыми транзисторами. У них в создании электрического тока участвуют носители заряда только одного типа (электроны или дырки).
Полевые транзисторы бывают двух видов: с управляющим p-n-переходом и со структурой металл - диэлектрик — полупроводник (МДП-транзисторы).
Рис. 2.37. Упрощенная структура полевого транзистора с управляющим p-n переходом (а); условные обозначения транзистора, имеющего канал n-типа (б) и р-типа (в); типовые структуры (г, д): структура транзистора с повышенным быстродействием (е)
Транзистор с управляющим p-n-переходом (рис. 2.37) представляет собой пластину (участок) из полупроводникового материала, имеющего электропроводность определенного типа, от концов которой сделаны два вывода — электроды стока и истока. Вдоль пластины выполнен электрический переход (p-n-переход или барьер Шотки), от которого сделан третий вывод — затвор.
Внешние напряжения прикладывают так, что между электродами стока и истока протекает электрический ток, а напряжение, приложенное к затвору, смещает электрический переход в обратном направлении. Сопротивление области, расположенной под электрическим переходом, которая носит название канала, зависит от напряжения на затворе. Это обусловлено тем, что размеры перехода увеличиваются с повышением приложенного к нему обратного напряжения, а увеличение области, обедненной носителями заряда, приводит к повышению электрического сопротивления канала.
Таким образом, работа полевого транзистора с управляющим p-n-переходом основана на изменении сопротивления канала за счет изменения размеров области, обедненной основными носителями заряда, которое происходит под действием приложенного к затвору обратного напряжения.
Электрод, от которого начинают движение основные носители заряда в канале, называют истоком, а электрод, к которому движутся основные носители заряда, называют стоком. Упрощенная структура полевого транзистора с управляющим p-n-переходом приведена на рис. 2.37, а. Условные обозначения даны на рис. 2.37, б, в, а структуры выпускаемых промышленностью полевых транзисторов — на рис. 2.37, г — е.
Если в пластинке полупроводника, например n-типа, созданы зоны с электропроводностью p-типа, то при подаче на p-n-переход напряжения, смещающего его в обратном направлении, образуются области, обедненные основными носителями заряда (рис. 2.37, а). Сопротивление полупроводника между электродами истока и стока увеличивается, так как ток проходит только по узкому каналу между переходами. Изменение напряжения затвор — исток приводит к изменению размеров зоны объемного заряда (размеров p-n перехода), т. е. к изменению сопротивления канала. Канал может быть почти полностью перекрыт и тогда сопротивление между истоком и стоком будет очень высоким (несколько — десятки МОм).
Напряжение между затвором и истоком, при котором ток стока достигает заданного низкого значения Ic , называют напряжением отсечки полевого транзистора Uзи отс. Строго говоря, при напряжении отсечки транзистор должен закрываться полностью, но наличие утечек и сложность измерения особо малых токов заставляют считать напряжением отсечки то напряжение, при котором ток достигает определенного малого значения. Поэтому в технических условиях на транзистор указывают, при каком токе стока произведено измерение Uзи отс.
Ширина p-n-перехода зависит также от тока, протекающего через канал. Если Uси не равно 0, например Uси >0 (рис. 2.37, а), то ток Ic, протекающий через транзистор, создаст по длине последнего падение напряжения, которое оказывается запирающим для перехода затвор - канал.
Рис. 2.38. Выходные характеристики полевого транзистора с управляющим p-n-переходом(а) ; его входная характеристика (6) и характеристика передачи (стокозатворная) (в): I - крутая область; II - пологая область, или область насыщения; III - область пробоя
Это приводит к увеличению ширины p-n-перехода и соответственно к уменьшению сечения и проводимости канала, причем ширина p-n-перехода увеличивается по мере приближения к области стока, где будет иметь место наибольшее падение напряжения, вызванное током Ic на сопротивлении канала Rси. Так, если считать, что сопротивление транзистора определяется только сопротивлением канала, то у края p-n-перехода, обращенного к истоку, будет действовать напряжение Uзи, а у края, обращенного к стоку, — напряжение /Uзи/+Uси. При малых значениях напряжения Ucи и малом Iс транзистор ведет себя как линейное сопротивление. Увеличение Uси приводит к почти линейному возрастанию Ic, а уменьшение Ucи - к соответствующему уменьшению Ic. По мере роста Ucи характеристика Ic=f(Ucи) все сильнее отклоняется от линейной, что связано с сужением канала у стокового конца. При определенном значении тока наступает так называемый режим насыщения (участок II на рис. 2.38, а), который характеризуется тем. что с увеличением Ucи ток Ic меняется незначительно. Это происходит потому, что при большом напряжении Ucи канал у стока стягивается в узкую горловину. Наступает своеобразное динамическое равновесие, при котором увеличение Ucи и рост тока Ic вызывают дальнейшее сужение канала и соответственно уменьшение тока Ic. В итоге последний остается почти постоянным. Напряжение, при котором наступает режим насыщения, называется напряжением насыщения. Оно, как видно из рис.2.38a, меняется при изменении напряжения Ucи. Так как влияние Uзи и Ucи на ширину канала у стокового вывода практически одинаково, то
Итак, напряжение отсечки, определенное при малом напряжении Uси<Uси нас, численно равно напряжению насыщения при Uзи=0, а напряжение насыщения при определенном напряжении на затворе Uзи равно разности напряжения отсечки и напряжения затвор - исток.
При значительном увеличении напряжения Uзи у стокового конца наблюдается пробой p-n-перехода.
В выходных характеристиках полевого транзистора можно выделить две рабочие области ОА и ОВ. Область ОА называют крутой областью характеристики, область АВ - пологой или областью насыщения. В крутой области транзистор может быть использован как омическое управляемое сопротивление. В усилительных каскадах транзистор работает на пологим участке характеристики. За точкой В возникает пробой электрического перехода.
Входная характеристика полевою транзистора с управляющим p-n-переходом (рис. 2.38,б) представляет собой обратную ветвь вольт-амперной характеристики p-n-перехода. Хотя ток затвора несколько меняется при изменении напряжения Ucи и достигает наибольшего значения при условии короткого замыкания выводов истока и стока (ток утечки затвора Iз ут) - им в большинстве случаев можно пренебречь. Изменение напряжения Uзи не вызывает существенных изменений тока затвора, что характерно для обратного тока p-n-переходa.
При работе в пологой области вольт-амперной характеристики ток стока при заданном напряжении Uзи определяют из выражения
Где Ic нач - начальный ток стока, под которым понимают ток при Uзи=0 и напряжении на стоке, превышающем напряжение насыщения: /Ucи/>/Ucи нас/.
Так как управление полевым транзистором осуществляется напряжением на затворе, то для количественном оценки управляющего действия затвора используют крутизну характеристики