
- •Экзаменационые билеты по цитологии
- •1 Цель,значение и задачи цитологии.Пути развития современной цитологии.
- •2 Методы изучения клетки
- •3 История развития цитологии.Клеточная теория и её значение.
- •4 Прокариоты и эукариоты.Общие свойства клеток.
- •5 Цитоплазма.Химический состав,физические свойства.
- •1. Объединение всех компонентов клетки в единую среду
- •2. Среда для прохождения химических реакций
- •3. Среда для существования и функционирования органоидов.
- •6 Гиалоплазма и эргастоплазма.Ультраструктура и функциональное значение.
- •7 Плазматическая мембрана, её функции.Современные представления о плазматической мембране.
- •8 Модели бм.
- •9 Специализированные структуры плазматической мембараны:реснички,жгутики,микроворсинки.
- •10 Транспортные функции цитоплазматической мембраны.Пассивный и активный транспорт.
- •2.1. Простая диффузия
- •2.2. Осмос
- •2.3. Диффузия ионов
- •2.4. Облегченная диффузия
- •1. Первично-активный транспорт
- •3.2. Вторично-активный транспорт
- •11 Пиноцитоз,фагоцитоз:их механизм.Значение этих процессов.
- •12 Межклеточные контакты.
- •13 Эндоплазматическая сеть. Ультраструктура и функции гранулярной сети.
- •14. Гладкая эндоплазматическая сеть и еѐ функции.
- •15 Рибосомы. Химический состав. Субмикроскопическое строение. Свободные рибосомы и полирибосомы.
- •16 Синтез белка на рибосомах и полирибосомах
- •17 Комплекс Гольджи. Морфология и субмикроскопия. Химический состав. Функции ком-плекса Гольджи.
- •18 Лизосомы. Значение лизосом в клетке. Лизосомные болезни.
- •19. Морфология и субмикроскопическое строение митохондрий
- •20. Функции митохондрий. Образование митохондрий.
- •21. Ядро. Морфология ядра, физико-химические свойства ядра. Значение ядра.
- •Общая характеристика интерфазного ядра
- •22.Ядро. Хроматин, гетерохроматин, эухроматин.
- •23.Ультраструктура ядра. Ядерная мембрана, ядерный сок.
- •24 Микроскопическое строение хромосом. Аномалии хромосом.
- •25 Ядрышко. Ультраструктура, химический состав и значение.
- •26 Субмикроскопическое строение хромосом.
- •27. Включения клетки.
- •28 Микротрубочки и филаменты. Химический состав, ультраструктура и значение в клетке.
- •Филаменты
- •29 Клеточный центр. Морфология и ультраструктура. Химический состав и значение клеточ-ного центра.
- •30. Митотическое веретено. Ультраструктура, химический состав, значение митотического ве-ретена.
- •31. Амитоз, эндомитоз, политения.
- •32 Гибель клетки: некроз,апоптоз,повреждения клетки.
7 Плазматическая мембрана, её функции.Современные представления о плазматической мембране.
Кле́точная мембра́на (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.
Функции
барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.
При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
осуществление генерации и проведения биопотенциалов.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.
Согласно современным представлениям центральный слой такой мембраны представляет собой текучий липидный бислой с включениями внутримембранных белков. Полагают, что ассоциированные с мембраной белки являются глобулярными. Некоторые из них расположены на полярной поверхности мембраны или частично погружены в ее монослой как с наружной, так и с внутренней стороны. Это так называемые периферические, функционально ассоциированные с мембраной белки, удерживаемые на ее поверхности при помощи нековалентных связей. Другие, интегральные, белки проходят через всю толщу мембраны, в том числе и через внутренние неполярные ее слои. В интегральных белках последовательность аминокислотных остатков распределена таким образом, что гидрофобные остатки аминокислот формируют структуры, которые пронизывают мембрану, а гидрофильные образуют функциональные домены на внутренней и/или наружной поверхности мембраны. Таким образом, функционально разные белки мембраны образуют в жидкокристаллическом бислое фосфолипидов своеобразную мозаичную структуру. Эта мозаика не является строго фиксированной, что позволяет разным классам ФЛ и минорным липидам мембраны при латеральной диффузии формировать определенные кластеры (участки поверхностного монослоя мембраны).
Плазматическая мембрана содержит много гликолипидов, полярные углеводные части которых (остатки моно- и олигосахаридов) расположены на ее поверхности, что позволяет им выполнять специфичные функции, такие как рецепция (клеточное узнавание) и иммунохимические реакции. Выступающие из бислоя гидрофильные олигосахаридные участки гликолипидов образуют у эукариотических клеток подобие наружной оболочки – гликокаликса.
Определенную роль в стабилизации липидного бислоя играет и слой воды, покрывающий снаружи монослой фосфолипидов и мембранных белков. Такие монослои воды удерживаются на поверхности мембраны за счет водородных связей между полярными «головками» ФЛ и молекулами воды [2]. В бислое индивидуальные липидные молекулы могут перемещаться (латеральная диффузия), что обеспечивает мембране жидкостность и гибкость. Отдельные молекулы ФЛ в зависимости от длины их жирнокислотных цепей способны перемещаться между наружным и внутренним монослоем мембраны, используя механизм флип-флопа.
Все это указывает на то, что бислойная мембрана является единой динамичной и саморегулирующейся системой