- •Экзаменационые билеты по цитологии
- •1 Цель,значение и задачи цитологии.Пути развития современной цитологии.
- •2 Методы изучения клетки
- •3 История развития цитологии.Клеточная теория и её значение.
- •4 Прокариоты и эукариоты.Общие свойства клеток.
- •5 Цитоплазма.Химический состав,физические свойства.
- •1. Объединение всех компонентов клетки в единую среду
- •2. Среда для прохождения химических реакций
- •3. Среда для существования и функционирования органоидов.
- •6 Гиалоплазма и эргастоплазма.Ультраструктура и функциональное значение.
- •7 Плазматическая мембрана, её функции.Современные представления о плазматической мембране.
- •8 Модели бм.
- •9 Специализированные структуры плазматической мембараны:реснички,жгутики,микроворсинки.
- •10 Транспортные функции цитоплазматической мембраны.Пассивный и активный транспорт.
- •2.1. Простая диффузия
- •2.2. Осмос
- •2.3. Диффузия ионов
- •2.4. Облегченная диффузия
- •1. Первично-активный транспорт
- •3.2. Вторично-активный транспорт
- •11 Пиноцитоз,фагоцитоз:их механизм.Значение этих процессов.
- •12 Межклеточные контакты.
- •13 Эндоплазматическая сеть. Ультраструктура и функции гранулярной сети.
- •14. Гладкая эндоплазматическая сеть и еѐ функции.
- •15 Рибосомы. Химический состав. Субмикроскопическое строение. Свободные рибосомы и полирибосомы.
- •16 Синтез белка на рибосомах и полирибосомах
- •17 Комплекс Гольджи. Морфология и субмикроскопия. Химический состав. Функции ком-плекса Гольджи.
- •18 Лизосомы. Значение лизосом в клетке. Лизосомные болезни.
- •19. Морфология и субмикроскопическое строение митохондрий
- •20. Функции митохондрий. Образование митохондрий.
- •21. Ядро. Морфология ядра, физико-химические свойства ядра. Значение ядра.
- •Общая характеристика интерфазного ядра
- •22.Ядро. Хроматин, гетерохроматин, эухроматин.
- •23.Ультраструктура ядра. Ядерная мембрана, ядерный сок.
- •24 Микроскопическое строение хромосом. Аномалии хромосом.
- •25 Ядрышко. Ультраструктура, химический состав и значение.
- •26 Субмикроскопическое строение хромосом.
- •27. Включения клетки.
- •28 Микротрубочки и филаменты. Химический состав, ультраструктура и значение в клетке.
- •Филаменты
- •29 Клеточный центр. Морфология и ультраструктура. Химический состав и значение клеточ-ного центра.
- •30. Митотическое веретено. Ультраструктура, химический состав, значение митотического ве-ретена.
- •31. Амитоз, эндомитоз, политения.
- •32 Гибель клетки: некроз,апоптоз,повреждения клетки.
1. Первично-активный транспорт
Транспорт веществ из среды с низкой концентрацией в среду с более высокой концентрацией не может быть объяснен движением по градиенту, т.е. диффузией. Этот процесс осуществляется за счет энергии гидролиза АТФ или энергии, обусловленной градиентом концентрации каких-либо ионов, чаще всего натрия. В случае, если источником энергии для активного транспорта веществ является гидролиз АТФ, а не перемещение через мембрану каких-то других молекул или ионов, транспорт называется первично активным.
Первично-активный перенос осуществляется транспортными АТФа-зами, которые получили название ионных насосов. В клетках животных наиболее распространена Na+ ,K+ — АТФаза (натриевый насос), представляющая собой интегральный белок плазматической мембраны и Са2+ — АТФазы, содержащиеся в плазматической мембране сарко-(эндо)-плазматического ретикулума. Все три белка обладают общим свойством — способностью фосфорилироваться и образовывать промежуточную фосфорилированную форму фермента. В фосфорилиро-ванном состоянии фермент может находиться в двух конформациях, которые принято обозначать Е1 и Е2. Конформация фермента — это способ пространственной ориентации (укладки) полипептидной цепи его молекулы. Две указанные конформации фермента характеризуются различным сродством к переносимым ионам, т.е. различной способностью связывать транспортируемые ионы.
Na+/K+- АТФаза обеспечивает сопряженный активный транспорт Na+ из клетки и К+ в цитоплазму. В молекуле Na+/K+- АТФазы имеется особая область (участок), в которой происходит связывание ионов Na и К. При конформации фермента E1 эта область обращена внутрь плазматического ретикулума. Для осуществления этой стадии превращения Са2+-АТФазы необходимо присутствие в саркоплазмати-ческом ретикулуме ионов магния. В последующем цикл работы фермента повторяется.
3.2. Вторично-активный транспорт
Вторичным активным транспортом называется перенос через мембрану вещества против градиента его концентрации за счет энергии градиента концентрации другого вещества, создаваемого в процессе активного транспорта. В клетках животных основным источником энергии для вторичного активного транспорта служит энергия градиента концентрации ионов натрия, который создается за счет работы Na+/K+ — АТФазы. Например, мембрана клеток слизистой оболочки тонкого кишечника содержит белок, осуществляющий перенос (симпорт) глюкозы и Na+ в эпителиоциты. Транспорт глюкозы осуществляется лишь в том случае, если Na+, одновременно с глюкозой связываясь с указанным белком, переносится по электрохимическому градиенту. Электрохимический градиент для Na+ поддерживается активным транспортом этих катионов из клетки.
В головном мозге работа Na+-насоса сопряжена с обратным поглощением (реабсорбцией) медиаторов — физиологически активных веществ, которые выделяются из нервных окончаний при действии возбуждающих факторов.
В кардиомиоцитах и гладкомышечных клетках с функционированием Na+, K+-АТФазы связан транспорт Са2+ через плазматическую мембрану, благодаря присутствию в мембране клеток белка, осуществляющего противотранспорт (антипорт) Na+ и Са2+. Ионы кальция переносятся чере мембрану клеток в обмен на ионы натрия и за счет энергии концентрационного градиента ионов натрия.
В клетках обнаружен белок, обменивающий внеклеточные ионы натрия на внутриклеточные протоны — Na+/H+ — обменник. Этот переносчик играет важную роль в поддержании постоянства внутриклеточного рН. Скорость, с которой осуществляется Na+/Ca2+ и Na+/H+ — обмен, пропорциональна электрохимическому градиенту Na+ через мембрану. При уменьшении внеклеточной концентрации Na+ ингибировании Na+ , K+-АТФазы сердечными гликозидами или в бескалиевой среде внутриклеточная концентрация кальция и протонов увеличена. Это увеличение внутриклеточной концентрации Са2+ при ингибировании Na+, K+-АТФазы лежит в основе применения в клинической практике сердечных гликозидов для усиления сердечных сокращений.
