Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ТВ (Word 2003).doc
Скачиваний:
0
Добавлен:
25.12.2019
Размер:
84.12 Mб
Скачать

Тема 14. Предельные теоремы теории вероятностей

14.1. Закон больших чисел. Центральная предельная теорема.

Основными понятиями теории вероятностей являются понятия случайного события и случайной величины. При этом предсказать заранее результат испытания, в котором может появиться или не появиться то или иное событие или какое-либо определенное значение случайной величины, невозможно, так как исход испытания зависит от многих случайных причин, не поддающихся учету.

Однако при неоднократном повторении испытаний наблюдаются закономерности, свойственные массовым случайным явлениям. Эти закономерности обладают свойством устойчивости. Суть этого свойства состоит в том, что конкретные особенности каждого отдельного случайного явления почти не сказываются на среднем результате большой массы подобных явлений, а характеристики случайных событий и случайных величин, наблюдаемых в испытаниях, при неограниченном увеличении числа испытаний становятся практически не случайными. В частности, если влияние на сумму отдельных слагаемых является равномерно малым, закон распределения суммы приближается к нормальному закону.

Для практики очень важно знание условий, при выполнении которых совокупное действие очень многих случайных причин приводит к результату, почти не зависящему от случая, так как позволяет предвидеть ход явлений. Условия, при которых совокупный результат воздействия случайных факторов практически перестает быть случайным, описываются в нескольких теоремах, которые носят общее название: закон больших чисел.

Под законом больших чисел не следует понимать какой-то один общий закон, связанный с большими числами. Закон больших чисел - это обобщенное название нескольких теорем, из которых следует, что при неограниченном увеличении числа испытаний средние величины стремятся к некоторым постоянным. Иными словами, сущность закона больших чисел состоит в том, что при большом числе независимых опытов частота появления какого- то события близка к его вероятности.

К теоремам закона больших чисел относятся теоремы Чебышева и Бернулли. Теорема Чебышева является наиболее общим законом больших чисел, теорема Бернулли - простейшим.

В основе доказательства теорем, объединенных термином "закон больших чисел", лежит неравенство Чебышева, по которому устанавливается вероятность отклонения случайной величины от ее математического ожидания.

Закон больших чисел играет важную роль в практических приме­нениях теории вероятностей. Свойство случайных величин при опре­деленных условиях вести себя практически как не случайные позволяет уверенно оперировать с этими величинами, предсказывать резуль­таты массовых случайных явлений почти с полной определенностью.

Возможности таких предсказаний в области массовых случайных явлений еще больше расширяются наличием другой группы предельных теорем, касающихся уже не предельных значений случайных величин, а предельных законов распределения. Речь идет о группе теорем, известных под названием «центральной предельной теоремы». Мы уже говорили о том, что при суммировании достаточно большого числа случайных величин закон распределения суммы неограниченно приближается к нормальному закону распределения при соблюдении некоторых условий (п.11.5). Эти условия, которые математически можно формулировать различным образом — в более или менее общем виде,— по существу сводятся к требованию, чтобы влияние на сумму отдельных слагаемых было равномерно малым, т. е. чтобы в состав суммы не входили члены, явно преобладающие над совокупностью остальных по своему влия­нию на рассеивание суммы. Различные формы центральной предельной теоремы различаются между собой теми условиями, для которых устанавливается это предельное свойство суммы случайных величин.

Различные формы закона больших чисел вместе с различными формами центральной предельной теоремы образуют совокупность так называемых предельных теорем теории вероятностей. Предель­ные теоремы дают возможность не только осуществлять научные прогнозы в области случайных явлений, но и оценивать точность этих прогнозов.