
- •Часть I. Теория вероятностей
- •Тема 1. Классическое определение вероятности…………………………………………............................4
- •Тема 2. Геометрическое и статистическое определения вероятности……………………………………8
- •Тема 3. Алгебра событий....................................................................................................................................12
- •Тема 4. Формула полной вероятности и формула Байеса………………………………………………...15
- •Тема 5. Схема Бернулли……………………………………………………………………………………….19
- •Тема 6. Дискретные случайные величины....................................................................................................25
- •Тема 12. Системы случайных величин……………………………………………………………………63
- •Тема 13. Функции случайных величин……………………………………………………………………82
- •Тема 14. Предельные теоремы теории вероятностей………………………………………………….100
- •Тема 15. Случайные функции…………………………………………………………………………….108
- •Тема 16. Вероятностные основы теории информации…………………………………………………116
- •Тема 1. Классическое определение вероятности
- •Случайные события.
- •Классификация событий
- •Классическое определение вероятности.
- •1.4. Контрольные вопросы
- •Тема 2. Геометрическое и статистическое определения вероятности
- •2.1. Геометрическая вероятность
- •2.2. Статистическая вероятность. Закон больших чисел.
- •Число бросаний Относит. Частота появления герба
- •2.3. Условная вероятность
- •2.4. Контрольные вопросы
- •2.5. Задачи для самостоятельно решения
- •Тема 3. Алгебра событий
- •3.1. Произведение событий
- •3.2. Сумма событий. Свойства операций сложения и умножения событий.
- •3.3. Вероятность появления хотя бы одного из событий.
- •3.4. Принцип практической невозможности.
- •3.5. Контрольные вопросы
- •Тема 4. Формула полной вероятности события и формула Байеса
- •4.1. Формула полной вероятности события
- •4.2. Формула Байеса
- •4.3. Контрольные вопросы
- •4.4. Задачи для самостоятельно решения
- •Тема 5. Повторение опытов.
- •5.1. Частная задача о повторении опытов (схема Бернулли)
- •5.2. Независимые испытания с несколькими исходами.
- •5.3. Формулы Муавра-Лапласа
- •5.3.1. Локальная теорема Муавра-Лапласа. Функция Гаусса.
- •5.3.2. Интегральная теорема Муавра-Лапласа. Функция Лапласа.
- •Тема 6. Дискретные случайные величины
- •6.1. Классификация случайных величин
- •6.2. Законы распределения дискретных случайных величин
- •6.2.1. Ряд распределения. Многоугольник распределения
- •6.2.2. Функция распределения
- •Тема 7. Числовые характеристики дискретных случайных величин
- •7.1. Характеристики положения. Математическое ожидание. Мода. Медиана.
- •7.2. Дисперсия. Среднеквадратическое отклонение.
- •7.3. Контрольные вопросы.
- •Тема 8. Законы распределения дискретных случайных величин
- •8.1. Биномиальное распределение (закон Бернулли).
- •8.2. Закон Пуассона
- •8.3. Контрольные вопросы.
- •8.4. Задачи для самостоятельного решения.
- •Тема 9. Непрерывные случайные величины
- •9.1. Законы распределения непрерывных случайных величин.
- •9.1.1. Интегральный закон распределения
- •9.1.2. Плотность распределения
- •10.1. Математическое ожидание. Мода. Медиана.
- •10.2. Дисперсия. Среднее квадратичное отклонение.
- •10.3. Моменты распределения.
- •10.4. Контрольные вопросы.
- •Тема 11. Законы распределения непрерывных случайных величин
- •11.1. Закон равномерной плотности.
- •11.2. Задачи для самостоятельного решения.
- •11.3. Экспоненциальное (показательное) распределение.
- •11.4. Задачи для самостоятельного решения.
- •11.5. Нормальный закон распределения.
- •11.5.1. Плотность нормального распределения вероятностей.
- •11.5.2. Нормальная функция распределения.
- •11.6. Контрольные вопросы
- •11.7. Задачи для самостоятельного решения.
- •Тема 12. Системы случайных величин
- •12.1. Функция распределения системы двух случайных величин.
- •12.2. Плотность распределения системы двух непрерывных случайных величин.
- •12.3. Таблица распределения системы двух дискретных случайных величин.
- •12.4. Условные законы распределения и их числовые характеристики.
- •12.5. Зависимые и независимые случайные величины
- •12.6. Числовые характеристики системы двух случайных величин.
- •Тема 13. Функции случайных величин
- •13.1. Числовые характеристики функций случайных величин.
- •13.2. Теоремы о числовых характеристиках функций случайных величин.
- •13.3. Законы распределения функций случайных величин.
- •13.3.1. Закон распределения функции одного случайного аргумента.
- •Функция на участке (а, b) монотонно возрастает или убывает.
- •2. Функция на участке (а, b) не является монотонной.
- •13.3.2. Закон распределения функции двух случайных аргументов.
- •13.3.3. Закон распределения суммы двух непрерывных случайных аргументов. Композиция законов распределения.
- •Тема 14. Предельные теоремы теории вероятностей
- •14.1. Закон больших чисел. Центральная предельная теорема.
- •14.1.1. Неравенство Чебышёва.
- •14.1.2. Теорема Чебышёва.
- •14.1.3. Теорема Бернулли
- •14.2. Центральная предельная теорема.
- •Тема 15. Случайные функции
- •15.1. Понятие о случайной функции.
- •15.2. Закон распределения случайной функции.
- •15.3. Вероятностные характеристики случайных функций.
- •15.4. Стационарные случайные функции.
- •Тема 16. Вероятностные основы теории информации
- •16.1. Энтропия как мера степени неопределенности состояния физической системы.
- •16.2. Энтропия и информация.
- •Приложение. Приближённые значения функции стандартного нормального распределения
Тема 14. Предельные теоремы теории вероятностей
14.1. Закон больших чисел. Центральная предельная теорема.
Основными понятиями теории вероятностей являются понятия случайного события и случайной величины. При этом предсказать заранее результат испытания, в котором может появиться или не появиться то или иное событие или какое-либо определенное значение случайной величины, невозможно, так как исход испытания зависит от многих случайных причин, не поддающихся учету.
Однако при неоднократном повторении испытаний наблюдаются закономерности, свойственные массовым случайным явлениям. Эти закономерности обладают свойством устойчивости. Суть этого свойства состоит в том, что конкретные особенности каждого отдельного случайного явления почти не сказываются на среднем результате большой массы подобных явлений, а характеристики случайных событий и случайных величин, наблюдаемых в испытаниях, при неограниченном увеличении числа испытаний становятся практически не случайными. В частности, если влияние на сумму отдельных слагаемых является равномерно малым, закон распределения суммы приближается к нормальному закону.
Для практики очень важно знание условий, при выполнении которых совокупное действие очень многих случайных причин приводит к результату, почти не зависящему от случая, так как позволяет предвидеть ход явлений. Условия, при которых совокупный результат воздействия случайных факторов практически перестает быть случайным, описываются в нескольких теоремах, которые носят общее название: закон больших чисел.
Под законом больших чисел не следует понимать какой-то один общий закон, связанный с большими числами. Закон больших чисел - это обобщенное название нескольких теорем, из которых следует, что при неограниченном увеличении числа испытаний средние величины стремятся к некоторым постоянным. Иными словами, сущность закона больших чисел состоит в том, что при большом числе независимых опытов частота появления какого- то события близка к его вероятности.
К теоремам закона больших чисел относятся теоремы Чебышева и Бернулли. Теорема Чебышева является наиболее общим законом больших чисел, теорема Бернулли - простейшим.
В основе доказательства теорем, объединенных термином "закон больших чисел", лежит неравенство Чебышева, по которому устанавливается вероятность отклонения случайной величины от ее математического ожидания.
Закон больших чисел играет важную роль в практических применениях теории вероятностей. Свойство случайных величин при определенных условиях вести себя практически как не случайные позволяет уверенно оперировать с этими величинами, предсказывать результаты массовых случайных явлений почти с полной определенностью.
Возможности таких предсказаний в области массовых случайных явлений еще больше расширяются наличием другой группы предельных теорем, касающихся уже не предельных значений случайных величин, а предельных законов распределения. Речь идет о группе теорем, известных под названием «центральной предельной теоремы». Мы уже говорили о том, что при суммировании достаточно большого числа случайных величин закон распределения суммы неограниченно приближается к нормальному закону распределения при соблюдении некоторых условий (п.11.5). Эти условия, которые математически можно формулировать различным образом — в более или менее общем виде,— по существу сводятся к требованию, чтобы влияние на сумму отдельных слагаемых было равномерно малым, т. е. чтобы в состав суммы не входили члены, явно преобладающие над совокупностью остальных по своему влиянию на рассеивание суммы. Различные формы центральной предельной теоремы различаются между собой теми условиями, для которых устанавливается это предельное свойство суммы случайных величин.
Различные формы закона больших чисел вместе с различными формами центральной предельной теоремы образуют совокупность так называемых предельных теорем теории вероятностей. Предельные теоремы дают возможность не только осуществлять научные прогнозы в области случайных явлений, но и оценивать точность этих прогнозов.