
- •Часть I. Теория вероятностей
- •Тема 1. Классическое определение вероятности…………………………………………............................4
- •Тема 2. Геометрическое и статистическое определения вероятности……………………………………8
- •Тема 3. Алгебра событий....................................................................................................................................12
- •Тема 4. Формула полной вероятности и формула Байеса………………………………………………...15
- •Тема 5. Схема Бернулли……………………………………………………………………………………….19
- •Тема 6. Дискретные случайные величины....................................................................................................25
- •Тема 12. Системы случайных величин……………………………………………………………………63
- •Тема 13. Функции случайных величин……………………………………………………………………82
- •Тема 14. Предельные теоремы теории вероятностей………………………………………………….100
- •Тема 15. Случайные функции…………………………………………………………………………….108
- •Тема 16. Вероятностные основы теории информации…………………………………………………116
- •Тема 1. Классическое определение вероятности
- •Случайные события.
- •Классификация событий
- •Классическое определение вероятности.
- •1.4. Контрольные вопросы
- •Тема 2. Геометрическое и статистическое определения вероятности
- •2.1. Геометрическая вероятность
- •2.2. Статистическая вероятность. Закон больших чисел.
- •Число бросаний Относит. Частота появления герба
- •2.3. Условная вероятность
- •2.4. Контрольные вопросы
- •2.5. Задачи для самостоятельно решения
- •Тема 3. Алгебра событий
- •3.1. Произведение событий
- •3.2. Сумма событий. Свойства операций сложения и умножения событий.
- •3.3. Вероятность появления хотя бы одного из событий.
- •3.4. Принцип практической невозможности.
- •3.5. Контрольные вопросы
- •Тема 4. Формула полной вероятности события и формула Байеса
- •4.1. Формула полной вероятности события
- •4.2. Формула Байеса
- •4.3. Контрольные вопросы
- •4.4. Задачи для самостоятельно решения
- •Тема 5. Повторение опытов.
- •5.1. Частная задача о повторении опытов (схема Бернулли)
- •5.2. Независимые испытания с несколькими исходами.
- •5.3. Формулы Муавра-Лапласа
- •5.3.1. Локальная теорема Муавра-Лапласа. Функция Гаусса.
- •5.3.2. Интегральная теорема Муавра-Лапласа. Функция Лапласа.
- •Тема 6. Дискретные случайные величины
- •6.1. Классификация случайных величин
- •6.2. Законы распределения дискретных случайных величин
- •6.2.1. Ряд распределения. Многоугольник распределения
- •6.2.2. Функция распределения
- •Тема 7. Числовые характеристики дискретных случайных величин
- •7.1. Характеристики положения. Математическое ожидание. Мода. Медиана.
- •7.2. Дисперсия. Среднеквадратическое отклонение.
- •7.3. Контрольные вопросы.
- •Тема 8. Законы распределения дискретных случайных величин
- •8.1. Биномиальное распределение (закон Бернулли).
- •8.2. Закон Пуассона
- •8.3. Контрольные вопросы.
- •8.4. Задачи для самостоятельного решения.
- •Тема 9. Непрерывные случайные величины
- •9.1. Законы распределения непрерывных случайных величин.
- •9.1.1. Интегральный закон распределения
- •9.1.2. Плотность распределения
- •10.1. Математическое ожидание. Мода. Медиана.
- •10.2. Дисперсия. Среднее квадратичное отклонение.
- •10.3. Моменты распределения.
- •10.4. Контрольные вопросы.
- •Тема 11. Законы распределения непрерывных случайных величин
- •11.1. Закон равномерной плотности.
- •11.2. Задачи для самостоятельного решения.
- •11.3. Экспоненциальное (показательное) распределение.
- •11.4. Задачи для самостоятельного решения.
- •11.5. Нормальный закон распределения.
- •11.5.1. Плотность нормального распределения вероятностей.
- •11.5.2. Нормальная функция распределения.
- •11.6. Контрольные вопросы
- •11.7. Задачи для самостоятельного решения.
- •Тема 12. Системы случайных величин
- •12.1. Функция распределения системы двух случайных величин.
- •12.2. Плотность распределения системы двух непрерывных случайных величин.
- •12.3. Таблица распределения системы двух дискретных случайных величин.
- •12.4. Условные законы распределения и их числовые характеристики.
- •12.5. Зависимые и независимые случайные величины
- •12.6. Числовые характеристики системы двух случайных величин.
- •Тема 13. Функции случайных величин
- •13.1. Числовые характеристики функций случайных величин.
- •13.2. Теоремы о числовых характеристиках функций случайных величин.
- •13.3. Законы распределения функций случайных величин.
- •13.3.1. Закон распределения функции одного случайного аргумента.
- •Функция на участке (а, b) монотонно возрастает или убывает.
- •2. Функция на участке (а, b) не является монотонной.
- •13.3.2. Закон распределения функции двух случайных аргументов.
- •13.3.3. Закон распределения суммы двух непрерывных случайных аргументов. Композиция законов распределения.
- •Тема 14. Предельные теоремы теории вероятностей
- •14.1. Закон больших чисел. Центральная предельная теорема.
- •14.1.1. Неравенство Чебышёва.
- •14.1.2. Теорема Чебышёва.
- •14.1.3. Теорема Бернулли
- •14.2. Центральная предельная теорема.
- •Тема 15. Случайные функции
- •15.1. Понятие о случайной функции.
- •15.2. Закон распределения случайной функции.
- •15.3. Вероятностные характеристики случайных функций.
- •15.4. Стационарные случайные функции.
- •Тема 16. Вероятностные основы теории информации
- •16.1. Энтропия как мера степени неопределенности состояния физической системы.
- •16.2. Энтропия и информация.
- •Приложение. Приближённые значения функции стандартного нормального распределения
Тема 12. Системы случайных величин……………………………………………………………………63
12.1. Функция распределения системы двух случайных величин…………………………………………64
12.2. Плотность распределения системы двух непрерывных случайных величин……………………….67
12.3. Таблица распределения системы двух дискретных случайных величин……………………………70
12.4. Условные законы распределения и их числовые характеристики…………………………………...72
12.5. Зависимые и независимые случайные величины……………………………………………………...75
12.6. Числовые характеристики системы двух случайных величин……………………………………….77
Тема 13. Функции случайных величин……………………………………………………………………82
13.1. Числовые характеристики функций случайных величин……………………………………………..82
13.2. Теоремы о числовых характеристиках функций случайных величин……………………………….86
13.3. Законы распределения функций случайных величин…………………………………………………89
13.3.1. Закон распределения функции одного случайного аргумента……………………………………..89
13.3.2. Закон распределения функции двух случайных аргументов……………………………………….94
13.3.3. Закон распределения суммы двух непрерывных случайных аргументов. Композиция законов распределения…………………………………………………………………………………………………96
Тема 14. Предельные теоремы теории вероятностей………………………………………………….100
14.1. Законы больших чисел. Центральная предельная теорема…………………………………………100
14.1.1. Неравенство Чебышева ……………………………………………………………………………...101
14.1.2. Теорема Чебышева………………………………………………………………………………… ..101
14.1.3. Теорема Бернулли …………………………………………………………………………………...104
14.2. Центральная предельная теорема …………………………………………………………………….105
Тема 15. Случайные функции…………………………………………………………………………….108
15.1. Понятие случайной функции…………………………………………………………………………108
15.2. Закон распределения случайной функции……………………………………………………………109
15.3. Вероятностные характеристики случайных функций……………………………………………….110
15.4. Стационарные случайные функции…………………………………………………………………...114
Тема 16. Вероятностные основы теории информации…………………………………………………116
16.1. Энтропия как мера степени неопределенности состояния физической системы………………….116
16.2. Энтропия и информация……………………………………………………………………………….120
Приложение. Приближённые значения функции стандартного нормального распределения…..122
Литература…………………………………………………………………………………………………...123
Введение
Обычно считают, что теория вероятностей возникла в середине XVII столетия, причем ее появление связывают с именами П. Ферма (1601-1665), Б. Паскаля (1623-1662) и Х. Гюйгенса (1629-1695). Отправным пунктом исследований являлись задачи, связанные с азартными играми, особенно играми в кости, поскольку при их изучении можно ограничиваться простыми и понятными математическими моделями. Игра в карты – тоже азартная игра, потому, что в ней главную роль играет случай - от него зависит, какие именно карты окажутся у партнеров. Математика случая‖ — так еще в XVII в. назвал теорию вероятностей один из ее основателей, французский ученый Блез Паскаль
Классическая теория вероятностей рассматривает вероятность как отношение числа благоприятствующих случаев ко всем возможным. При этом предполагается, что все рассмотренные случаи являются равновозможными, равновероятными. Гюйгенс в сочинении "О расчетах при игре в кости" писал: "...думаю, при внимательном изучении предмета читатель заметит, что имеет дело не только с игрой, но что здесь закладываются основы очень интересной и глубокой теории".
Значительное влияние на развитие теории вероятностей оказали Д. Бернулли (1654-1705), А. Муавр (1667-1754), Т. Байес (1702-1763), П. Лаплас (1749-1827), К. Гаусс (1777-1855), С. Пуассон (1781-1840). Например, Д. Бернулли принадлежит первое доказательство одного из важнейших положений теории вероятностей - так называемого "закона больших чисел". Теорема, которую он доказал, устанавливает связь между вероятностью события и частотой его появления.
Развитие теории вероятностей тесно связано с традициями и достижениями русской науки. Фундаментальные результаты были получены П. Л. Чебышевым (1821-1894), А. М. Ляпуновым (1857-1918), позже большой вклад в ее развитие внесли Е. Е. Слуцкий (1903-1987) и ряд других.