
- •Місце фізики у сучасному житті.
- •Підрозділи фізики та предмети їх досліджень.
- •Основні типи взаємодій. Їх роль у формуванні всесвіту.
- •Гравітаційна взаємодія, закон всесвітнього тяжіння.
- •Джерело гравітаційної взаємодії. Напруженість та потенціал поля точкової маси.
- •6. Гравітаційна взаємодія поблизу поверхні Землі
- •Електрична взаємодія. Закон Кулона.
- •Джерело електричної взаємодії. Потенціал і напруженість поля точкового заряду.
- •Принцип суперпозиції для гравітаційного та кулонівського поля.
- •Фізичні властивості твердих тіл та рідин.
- •Маса. Зв'язок маси тіла з його вагою. Одиниці виміру маси та ваги.
- •Терези. Типи терезів та вимірювання ваги.
- •13.Маса, як мірило інертності тіла. Другий закон Ньютона.
- •14.Густина, як фізична характеристика речовини. Методи визначення густини.
- •Закон Архімеда. Вплив сили Архімеда на результати вимірів ваги тіла.
- •Матеріальна точка (мт). Визначення положення мт у просторі, радіус-вектор.
- •Характеристики руху. Середня та миттєва швидкість. Нормальне та тангенціальне прискорення. Одиниці виміру швидкості та прискорення.
- •Інерціальні системи. Перший закон Ньютона.
- •Сила. Одиниці виміру сили. Прояви дії сили. Другий закон Ньютона.
- •Імпульс мт та повний імпульс механічної системи. Закон збереження імпульсу.
- •Третій закон Ньютона.
- •Пружна деформація. Закон Гука. Модуль Юнга. Енергія деформованої пружини.
- •Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією мт. Розрахунок роботи.
- •Закон збереження енергії.
- •Однорідне силове поле. Рух мт в однорідному силовому полі.
- •Сили тертя. Сухе та грузле тертя. Рух твердого тіла по похилій площині.
- •Поступальний та обертальний рухи твердого тіла (тт). Кутова швидкість та кутове прискорення.
- •Правило важелів Архімеда.
- •Гідростатика. Фізичні властивості рідини.
- •Закон Паскаля.
- •Закон Архімеда
- •Принцип дії гідравлічного пресу.
- •Гідродинаміка. Теорема про неперервність течії.
- •40. Рівняння Бернуллі та його наслідки
- •41.Підйомна сила крила
- •Рух реальної рідини. Сили внутрішнього тертя, коефіцієнт в’язкості.
- •Рух рідини по трубах. Пропускна спроможність труб.
- •Визначення коефіцієнту в’язкості.
- •Ламінарна та турбулентна течія. Число Рейнольда. Умови ламінарності течії.
- •Предмет дослідження молекулярної фізики. Будова речовин. Визначення вуглецевих одиниць.
- •Моль речовини. Число Авогадро. Характерний розмір молекул.
- •Температура. Визначення температури газовим термометром.
- •Шкала Цельсія та абсолютна шкала температури.
- •50. Рівняння Клапейрона.
- •Ізопроцеси. Закон Бойля-Маріотта
- •Закон Гей-Люссака.
- •53.Закон Шарля.
- •Парціальний тиск. Закон Дальтона.
- •55. Молекулярно-кінетична теорія газового тиску
- •Розподіл середньої енергії молекул за ступенями вільності.
- •Внутрішня енергія ідеального газу.
- •Перший початок термодинаміки. Робота газу при сталому тиску.
- •Теплоємність газу за сталого об’єму та сталого тиску.
- •Закон Дюлонга та Пті.
- •Барометрична формула.
- •Адіабатичний процес. Рівняння адіабати.
- •Цикл Карно. Коефіцієнт корисної дії теплової машини.
- •Теплові властивості реальних середовищ. Температурна діаграма процесу нагрівання речовини.
- •Питома теплота плавлення та пароутворення речовини.
- •66. Рівняння Ван-дер-Ваальса. Ізотерми Ван-дер-Ваальса.
- •Класифікація матеріалів за електричними властивостями. Провідники, діелектрики, напівпровідники та надпровідники.
- •Капілярні явища. Сила поверхневого натягу, висота підняття рідини в капілярі.
- •Поле точкового заряду. Силові лінії електричного поля. Геометрична інтерпретація полів силовими лініями.
- •Електричний диполь. Дипольний момент. Поле диполя.
- •Теорема Гауса.
- •Полярні і неполярні молекули. Поляризація речовини.
- •73. Вплив речовини діелектрика на електричне поле
- •П’єзоелектрики, сегнетоелектрики, піроелектрики.
- •Поведінка провідників в електричному полі. Електроємність провідників. Одиниці вимірювання електроємності.
- •Джерело електрорушійної сили (гальванічний елемент, електрогенератори).
- •Конденсатори. Ємність плаского конденсатора.
- •Паралельне та послідовне з’єднання конденсаторів.
- •79.Енергія плоского конденсатора
- •Постійний електричний струм. Середня швидкість спрямованого руху електронів.
- •Густина струму. Закон Ома у локальній формі.
- •Провідність та питомий опір речовини.
- •Електроопір лінійних провідників. Закон Ома для ділянки кола.
- •Закон Джоуля-Лєнца.
- •Паралельне та послідовне з’єднання резисторів.
- •Перше та друге правила Кірхгофа на прикладах.
- •Термоелектричні явища. Ефекти Зеєбека та Пельт’є.
- •Явища термоелектронної емісії.
- •Електровакуумна лампа діод. Вольт-амперна характеристика вакуумного діоду.
- •90.Електронна лампа тріод
- •Магнітне поле. Закон Біо-Савара-Лапласа.
- •Напруженість та магнітна індукція. Сила Лоренца.
- •Магнітні поля колового та нескінченного струму.
- •Сила Ампера.
- •Закон циркуляції магнітного поля.
- •96.Соленоїд. Енергія та індуктивність довгого соленоїда.
- •97. Потік магнітного поля. Закон електромагнітної індукції Фарадея. Явище самоіндукції.
- •Принцип дії електричного генератора змінного струму.
- •Класифікація матеріалів за магнітними властивостями. Феромагнетики, парамагнетики та діамагнетики.
- •Принципи мас спектрометрії.
- •Поведінка провідників у змінному полі.
- •Електричні прилади і їх використання.
- •Променева трубка. Принцип роботи осцилографа. Фігури Ліссажу.
- •У мови виникнення періодичного руху.
- •Найпростіші коливальні системи. Математичний, пружинний та фізичний маятники.
- •Енергія маятників. Рівняння руху маятників.
- •Власні частоти коливань математичного, пружинного та фізичного маятників.
- •Електричні коливання. Електричний коливальний контур.
- •Згасаючі електричні коливання.
- •Активний та реактивний опори.
- •Вимушені коливання. Явище резонансу.
- •Відкритий коливальний контур. Випромінювання електромагнітних хвиль.
- •Рівняння електромагнітного поля.
- •Принцип радіозв’язку. Модульований радіосигнал
- •Світлова хвиля. Довжини і частоти хвиль світлового діапазону.
- •Енергія світлової хвилі. Вектор Пойтінга.
- •Принцип Ферма розповсюдження світлових хвиль. Закони відбиття та заломлення світлових хвиль.
- •Фотометрія. Сила світла, освітленість, світимість – визначення та одиниці виміру
- •Геометрична оптика. Променеве наближення Чотири закони геометричної оптики.
- •Тонка лінза. Оптична сила, фокусна відстань, фокальна площина тонкої лінзи.
- •Формула тонкої лінзи той, що збирає і той, що розсіює.
- •Побудова оптичних зображень за допомогою тонкої лінзи.
- •Інтерференція світла і її умови.
- •Інтерференція світла від двох когерентних джерел.
- •Інтерференція світла на тонких плівках. Просвітлення оптики.
- •Дисперсія світла. Дослідження Ньютона.
- •Дифракція світла. Дифракційна гратка.
- •Елементи квантової фізики. Принцип невизначеності.
- •Взаємодія світла з речовиною. Поглинання та випромінювання світла атомами. Постулати Бора.
- •Серії випромінювання. Умови квантування.
- •Потенціальна яма. Тунельний ефект.
- •Потенціальний бар’єр.
- •Ефект Компотна.
- •Явище фотоефекту. Формула Ейнштейна для фотоефекту.
- •Будова атому. Досліди Резерфорда.
- •Радіоактивність. Закон радіоактивного розпаду.
- •Радіоактивне випромінювання та взаємодія його з речовиною.
- •Взаємозв’язок маси та енергії матерії. Атомний розпад. Ланцюгова реакція.
- •Атомна енергетика
Напруженість та магнітна індукція. Сила Лоренца.
Сила Лоренца - сила, що діє на електричний заряд, який перебуває у електромагнітному полі.
.
Тут
-
сила, q
- величина заряду,
-
напруженість
електричного поля,
-
швидкість
руху заряду,
-
вектор
магнітної індукції.[1]
Електричне поле діє на заряд із силою, направленою вздовж силових ліній поля. Магнітне поле діє лише на рухомі заряди. Сила дії магнітного поля перпендикулярна до силових ліній поля й до швидкості руху заряду.
Названа на честь Гендрика Лоренца, який розробив це поняття 1895 року.
Магнітні поля колового та нескінченного струму.
Магні́тне по́ле — складова електромагнітного поля, за допомогою якої здійснюється взаємодія між рухомими електрично зарядженими частинками.
Поділяється на магнітне поле колового струму та магнітне поле нескінченного струму.
Магнітне
поле кругового струму - створюється
струмом поточному по тонкому круглому
проводу
Висновок
формули для магнітного поля кругового
струму: Оскільки відстань всіх
елементів провідника до центру кругового
струму однаково одно R і всі елементи
провідника перпендикулярні радіусу-вектору
(sinα = 1), то
.Формула для магнітного поля кругового
струму
.
По
провіднику у вигляді кола радіуса R
тече струм І. Визначимо за допомогою
закону Біо - Савара - Лапласа індукцію
магнітного поля
на
осі
контуру
в точці А, що
створюється
цим
струмом.
Виділимо
два симетричних відносно центри кола
елементи струму
та
,
які створюють відповідні вектори
індукції
та
.
Ці
вектори можна розкласти на складові
вздовж (÷÷) та поперек (^) осі контуру
та
.
Індукція
визначається
векторною сумою
по
всім
.
З малюнка видно, що ця сума складається
попарно із сум поперечних, протилежних
за напрямком, складових
,
які взаємно знищуються та паралельних
складових
,
тобто їх сума і є величиною індукції.
Таким чином за напрямком вектор
буде
направлений уздовж осі контуру, а з
його вершини видно, що струм протікає
проти руху годинникової стрілки. Із
малюнка видно, що
Тепер знайдемо величину вектора індукції
(5)
Якщо точка А співпадає з центром кола, то r=R і в центрі колового струму буде
Сила Ампера.
Сила Ампера - це сила, яка діє на провідник із електричним струмом з боку магнітного поля.
Сила Ампера залежить від:
сили струму I
елемента (частини) довжини провідника dl
кута між напрямом струму і напрямом ліній магнітного поля α,
магнітної індукції B
У векторній формі сила Ампера записується
.
Якщо кут між векторами B i I <90°:
-
сила Ампера
B
= 1 Тл(Тесла) - індукція магнітного поля
I
= 1 А(Ампер) - сила струму
l
= 1 м(метр) - довжина провідника
-
кут між векторами B
i I
Якщо кут між векторами B i I =90°, тоді sin90°=1, звідси:
F = BIl