- •Электрические заряды. Точечный заряд. Закон Кулона.
- •Напряженность электрического поля
- •Принцип суперпозиции электрических полей
- •Поток вектора напряженности поля
- •Теорема Остроградского-Гаусса
- •Электрическое поле равномерно заряженной плоской поверхности
- •Электрическое поле равномерно заряженной цилиндрической поверхности
- •Электрическое поле равномерно заряженной сферической поверхности
- •Электрическое поле равномерно заряженного шара
- •Работа сил электростатического поля. Потенциал
- •Эквипотенциальные поверхности. Связь между напряженностью электрического поля и потенциалом
- •Поле в. Сила Лоренца
- •Закон Био-Савара
- •Циркуляция и поток вектора в
- •Применение теоремы о циркуляции вектора в. Поле прямого тока
- •Применение теоремы о циркуляции вектора в. Поле соленоида
- •Сила Ампера
- •Работа поля в при перемещении контура с током
- •Виды поляризации диэлектриков
- •Поляризованность р
- •Свойства поля вектора р
- •Вектор d
- •Условия на границе двух диэлектриков для векторов b и d
- •Намагничение вещества. Намагниченность j
- •Циркуляция вектора j
- •Вектор h
- •Граничные условия для b и h
- •Уравнение Максвелла (в интегральной форме)
- •Законы геометрической оптики
- •Принцип Ферма. Закон преломления
- •Явление полного отражения
- •Оптическая система. Кардинальные плоскости
- •Формула оптической системы
- •Тонкая линза. Формула линзы
- •Интерференция от двух когерентных источников
- •Бипризма Френеля
- •Интерференция при отражении от тонких пластинок
- •Кольца Ньютона
- •Дифракция света. Принцип Гюйгенса-Френеля
- •Зоны Френеля
- •Диаграмма Френеля
- •Дифракция Френеля от простейших преград. Дифракция от круглого отверстия
- •Дифракция Френеля от простейших преград. Дифракция от непрозрачного круглого диска
- •Дифракционная решетка
- •Закономерности в атомных спектрах
- •Опыт по рассеянию альфа частиц
- •Модель атома Резерфорда
- •Постулаты Бора
- •Элементарная боровская теория водородоподобного атома
- •Гипотеза де Бройля
- •Принцип неопределенности
- •Уравнение Шредингера
- •Масса и энергия связи ядра
- •Радиоактивность. Виды радиоактивности
- •Альфа-распад
- •Бета-распад
Электрическое поле равномерно заряженной плоской поверхности
Пусть поверхностная плотность заряда равна σ. Из симметрии задачи, очевидно, что вектор Е может быть только перпендикулярным заряженной плоскости. Кроме того, ясно, что в симметричных относительно этой плоскости точках вектор Е одинаков по модулю и противоположен по направлению. Такая конфигурация поля подсказывает, что в качестве замкнутой поверхности следует выбрать прямой цилиндр с основаниями параллельными плоскости.
Поток через боковую поверхность этого цилиндра равен нулю, и поэтому полный поток через всю поверхность цилиндра равна 2EdS, где S – площадь каждого торца цилиндра. Внутри цилиндра заключен заряд σS. Согласно теореме Гаусса 2EdS = σS откуда получаем: Е = σ/2ε0.
Электрическое поле равномерно заряженной цилиндрической поверхности
Поле бесконечного круглого цилиндра, заряженного равномерно по поверхности так, что на единицу его длины приходится заряд λ. Из соображений симметрии следует, что вектор Е в каждой точке перпендикулярен оси цилиндра, а модуль вектора Е зависит только от расстояния r до оси цилиндра. Это подсказывает, что замкнутую поверхность надо взять в форме коаксиального прямого цилиндра.
Тогда поток вектора Е сквозь торцы этого цилиндра равен нулю, а через боковую поверхность ES, где S – площадь боковой поверхности цилиндра S = 2πrh. r – радиус боковой поверхности цилиндра, h – его высота. По теореме Гаусса для случая r>R (R – радиус бесконечного круглого цилиндра) имеем E2πrh = λh/ε0, откуда:
E = λ/2πrε0
Электрическое поле равномерно заряженной сферической поверхности
Это поле центрально-симметрично – направление вектора Е в любой точке проходит через центр сферы, а модуль зависит только от расстояния до центра сферы. При такой конфигурации поля в качестве замкнутой поверхности надо взять концентрическую сферу. Пусть ее радиус r>R, тогда по теореме Гаусса E4πr2 = q/ε0, откуда:
E = q/4π ε0r2
Если r<R, то замкнутая поверхность не содержит внутри зарядов, поэтому в этой области всюду Е=0, т.е. внутри равномерно заряженной сферической поверхности электрическое поле отсутствует. Вне этой поверхности поле убывает с расстоянием по такому же закону, как у точечного заряда.
Электрическое поле равномерно заряженного шара
Поле такой сферы тоже обладает центральной симметрией. Для поля вне сферы получается тот же результат, что и в случае поверхностно заряженной сферы. Однако для точек внутри результат будет другой. Сферическая поверхность радиуса r (r<R) заключает в себе заряд равный q = ρ4πr3/3.
Следовательно, теорема Гаусса для такой поверхности: E4πr2 = ρ4πr3/3ε0.
Откуда, заменяя ρ через q/4/3* πR3 получаем Е=qr/ 4πε0R3.
Внутри сферы напряженность поля растет линейно с расстоянием r от центра сферы.
Вне сферы напряженность убывает по такому же закону, как и у точечного заряда.
