- •Электрические заряды. Точечный заряд. Закон Кулона.
- •Напряженность электрического поля
- •Принцип суперпозиции электрических полей
- •Поток вектора напряженности поля
- •Теорема Остроградского-Гаусса
- •Электрическое поле равномерно заряженной плоской поверхности
- •Электрическое поле равномерно заряженной цилиндрической поверхности
- •Электрическое поле равномерно заряженной сферической поверхности
- •Электрическое поле равномерно заряженного шара
- •Работа сил электростатического поля. Потенциал
- •Эквипотенциальные поверхности. Связь между напряженностью электрического поля и потенциалом
- •Поле в. Сила Лоренца
- •Закон Био-Савара
- •Циркуляция и поток вектора в
- •Применение теоремы о циркуляции вектора в. Поле прямого тока
- •Применение теоремы о циркуляции вектора в. Поле соленоида
- •Сила Ампера
- •Работа поля в при перемещении контура с током
- •Виды поляризации диэлектриков
- •Поляризованность р
- •Свойства поля вектора р
- •Вектор d
- •Условия на границе двух диэлектриков для векторов b и d
- •Намагничение вещества. Намагниченность j
- •Циркуляция вектора j
- •Вектор h
- •Граничные условия для b и h
- •Уравнение Максвелла (в интегральной форме)
- •Законы геометрической оптики
- •Принцип Ферма. Закон преломления
- •Явление полного отражения
- •Оптическая система. Кардинальные плоскости
- •Формула оптической системы
- •Тонкая линза. Формула линзы
- •Интерференция от двух когерентных источников
- •Бипризма Френеля
- •Интерференция при отражении от тонких пластинок
- •Кольца Ньютона
- •Дифракция света. Принцип Гюйгенса-Френеля
- •Зоны Френеля
- •Диаграмма Френеля
- •Дифракция Френеля от простейших преград. Дифракция от круглого отверстия
- •Дифракция Френеля от простейших преград. Дифракция от непрозрачного круглого диска
- •Дифракционная решетка
- •Закономерности в атомных спектрах
- •Опыт по рассеянию альфа частиц
- •Модель атома Резерфорда
- •Постулаты Бора
- •Элементарная боровская теория водородоподобного атома
- •Гипотеза де Бройля
- •Принцип неопределенности
- •Уравнение Шредингера
- •Масса и энергия связи ядра
- •Радиоактивность. Виды радиоактивности
- •Альфа-распад
- •Бета-распад
Дифракционная решетка
Периодическая система одинаковых, расположенных на одном и том же расстоянии друг от друга щелей, называется дифракционной решёткой. Расстояние d между серединами соседних щелей называется периодом дифракционной решётки. Обычно в дифракционных решётках, используемых в оптике, щели являются узкими, т.е. их размер b во много раз меньше периода дифракционной решётки d<<b. Размер дифракционной решётки, состоящей из N узких щелей, называется её шириной L и вычисляется по формуле L=Nd.
При освещении дифракционной решётки плоской световой волной с длинной волны λ, нормально падающей на решётку, на достаточно большом расстоянии от решётки наблюдается дифракционная картина, которая может наблюдаться и на конечном расстоянии с помощью выпуклой линзы на плоском экране, помещённом в её фокусе.
Характер распределения интенсивности представляет собой чередование главных дифракционных максимумов, между которыми располагаются побочные дифракционные максимумы и минимумы. Главные дифракционные максимумы интенсивности располагаются в направлениях φm, в которых волны от щелей в точке наблюдения имеют
разность хода, кратную λ, т.е.:
.
Главный дифракционный максимум,
соответствующий направлению, называется
дифракционным максимумом m- го порядка.
Центральный дифракционный максимум
соответственно является дифракционным
максимумом нулевого порядка (m=0) и имеет
наибольшую величину.
Закономерности в атомных спектрах
Серия Лаймана ω = R(1/12 – 1/n2); (n = 2,3,4,…)
Серия Бальмера ω = R(1/22 – 1/n2); (n = 3,4,5,…)
Серия Пашена ω = R(1/32 – 1/n2); (n = 4,5,6,…)
Серия Брэкетта ω = R(1/42 – 1/n2); (n = 5,6,7,…)
Серия Пфунда ω = R(1/52 – 1/n2); (n = 6,7,8,…)
Формула Ридберга ω = R(1/m2 – 1/n2); (m=1,…; n = m+1,…)
R = 3.29*10-15Гц (Постоянная Ридберга)
Опыт по рассеянию альфа частиц
Первая попытка создания модели атома на основе накопленных экспериментальных данных (1903 г.) принадлежит Дж. Томсону. Он считал, что атом представляет собой электронейтральную систему шарообразной формы радиусом, примерно равным 10–10 м. Положительный заряд атома равномерно распределен по всему объему шара, а отрицательно заряженные электроны находятся внутри него (рис. 6.1.1). Для объяснения линейчатых спектров испускания атомов Томсон пытался определить расположение электронов в атоме и рассчитать частоты их колебаний около положений равновесия. Однако эти попытки не увенчались успехом. Через несколько лет в опытах великого английского физика Э. Резерфорда было доказано, что модель Томсона неверна.
Первые прямые эксперименты по исследованию внутренней структуры атомов были выполнены Э. Резерфордом и его сотрудниками Э. Марсденом и Х. Гейгером в 1909–1911 годах. Резерфорд предложил применить зондирование атома с помощью α-частиц, которые возникают при радиоактивном распаде радия и некоторых других элементов. Масса α-частиц приблизительно в 7300 раз больше массы электрона, а положительный заряд равен удвоенному элементарному заряду. В своих опытах Резерфорд использовал α-частицы с кинетической энергией около 5 МэВ (скорость таких частиц очень велика – порядка 107 м/с, но все же значительно меньше скорости света). α-частицы – это полностью ионизированные атомы гелия.
Опыты Резерфорда и его сотрудников привели к выводу, что в центре атома находится плотное положительно заряженное ядро, диаметр которого не превышает 10–14–10–15 м. Это ядро занимает только 10–12 часть полного объема атома, но содержит весь положительный заряд и не менее 99,95 % его массы. Веществу, составляющему ядро атома, следовало приписать колоссальную плотность порядка ρ ≈ 1015 г/см3. Заряд ядра должен быть равен суммарному заряду всех электронов, входящих в состав атома. Опираясь на классические представления о движении микрочастиц, Резерфорд предложил планетарную модель атома. Разработал классическую теорию рассеяния α-частиц, и получил формулу для распределения рассеянных частиц по значению угла отклонения от первоначального направления:
dNθ/N = nd(Ze2/mαv2)2*dΩ/sin4(θ/2)
Согласно этой модели, в центре атома располагается положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Атом в целом нейтрален. Вокруг ядра, подобно планетам, под действием кулоновских сил со стороны ядра вращаются электроны
По законам классической электродинамики, движущийся с ускорением заряд должен излучать электромагнитные волны, уносящие энергию. За короткое время (порядка 10-8 с) все электроны в атоме Резерфорда должны растратить всю свою энергию и упасть на ядро. То, что этого не происходит в устойчивых состояниях атома, показывает, что внутренние процессы в атоме не подчиняются классическим законам.
