
- •1) Электрические свойства тел. Закон сохранения электрического заряда.
- •2)Закон Кулона.
- •3)Напряженность электростатического поля. Принцип суперпозиции электростатических полей.
- •4)Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме.
- •5)Применение теоремы Остроградского-Гаусса к расчету электростатических полей тел различной формы.
- •6)Работа по перемещению заряда в электростатическом поле.
- •7)Циркуляция вектора напряженности электростатического поля. Признак потенциальности поля.
- •8)Потенциал электростатического поля.
- •9)Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- •10)Электрический диполь. Типы диэлектриков.
- •11)Свободные и связанные заряды. Поляризация диэлектриков.
- •12)Напряженность поля в диэлектрике.
- •13) Электрическое смещение. Теорема Остроградского-Гаусса для электростатического поля в диэлектрике.
- •14)Условия на границе раздела двух диэлектриков.
- •15) Сегнетоэлектрики. Пьезоэлектрический эффект.
- •16) Проводники в электростатическом поле. Поле внутри проводника и у его поверхности.
- •17) Распределение зарядов в проводнике.
- •18)Электроемкость уединенного проводника.
- •19) Конденсаторы. Соединение конденсаторов.
- •20)Энергия электростатического поля.
- •21) Сила и плотность тока. Электродвижущая сила и напряжение.
- •22) Закон Ома для однородного участка цепи. Сопротивление проводников.
- •23) Работа и мощность тока.
- •24) Закон Джоуля-Ленца.
- •25)Закон Ома для неоднородного участка цепи.
- •26) Правила Кирхгофа для разветвленных цепей.
- •27.Классическая электронная теория проводимости металлов.
- •28) Объяснение законов Ома, Джоуля-Ленца и Видемана-Франца из электронных представлений.
- •29)Температурная зависимость сопротивления металлов. Сверхпроводимость.
- •30) Контактная разность потенциалов. Законы Вольта.
- •31)Термоэлектрические явления Зеебека, Пельтье и Томсона.
- •32) Электролиз. Законы Фарадея.
- •33) Несамостоятельный газовый разряд.
- •34) Самостоятельный газовый разряд и его виды.
- •36. Магнитное поле и его характеристики.
- •37. Закон Био-Савара- Лапласа и его применение к расчету магнитного поля.
- •38) Закон Ампера. Взаимодействие параллельных токов.
- •39)Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •40)Ускорители заряженных частиц. Эффект Холла.
- •41)Циркуляция вектора магнитной индукции и ее применение к расчету магнитного поля.
- •42. Поток вектора магнитной индукции. Теорема Гаусса о потоке вектора магнитной индукции.
- •43. Работа по перемещению проводника и контура с током в магнитном поле.
- •44. Явление электромагнитной индукции. Опыты Фарадея. Закон Фарадея. Правило Ленца.
- •45) Индуктивность контура. Явление само- и взаимоиндукции.
- •46)Энергия магнитного поля. Объемная плотность энергии.
- •47)Магнитные моменты электронов и атомов. Гиромагнитное отношение.
- •48)Диа- и парамагнетизм. Намагниченность.
- •49) Магнитное поле в веществе. Ферромагнетики и их свойства.
- •50)Основы теории Максвелла для электромагнитного поля. Вихревое электрическое поле. Ток смещения.
- •51) Уравнения Максвелла для электромагнитного поля в интегральной форме.
- •52) Электромагнитные волны и их свойства. Энергия электромагнитных волн. Вектор Умова-Пойтинга.
8)Потенциал электростатического поля.
Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду: - энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле. Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.
За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора. - следствие принципа суперпозиции полей (потенциалы складываются алгебраически).
9)Напряженность как градиент потенциала. Эквипотенциальные поверхности.
Напряженность как градиент потенциала различают две характеристики электростатического поля: силовую (напряженность) и энергетическую (потенциал). Напряженность и потенциал - различные характеристики одной и той же точки поля; следовательно, между ними должна существовать связь. Рассматривая две точки с координатами (x, y, z) и (x+dx, y, z), между которыми перемещается заряд, можно сделать вывод, что напряженность как градиент потенциала имеет формулу: Величина, характеризующая быстроту изменения потенциала в направлении силовой линии, называется градиентом потенциала E= -grad . Отсюда следует, что вектор напряженности Е численно равен градиенту потенциала и направлен в сторону убывания потенциала. Связь между напряженностью и потенциалом позволяет по известной напряженности поля найти разность потенциалов между двумя произвольными точками этого поля.
ЭКВИПОТЕНЦИА́ЛЬНАЯ ПОВЕ́РХНОСТЬ, поверхность, во всех точках которой потенциал электрического поля имеет одинаковое значение напряженности электростатического поля перпендикулярны эквипотенциальной поверхности. Другими словами: эквипотенциальная поверхность ортогональна к силовым линиям поля, а вектор напряженности электрического поляЕ всегда перпендикулярен эквипотенциальным поверхностям и всегда направлен в сторону убывания потенциала. Работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности равна нулю, так как j = 0.
Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд. Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности. Поверхность проводника в электростатическом поле является эквипотенциальной поверхностью.
10)Электрический диполь. Типы диэлектриков.
Электрический диполь — система двух равных по модулю разноименных точечных зарядов (+q,-q) , расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Электрический момент диполя (дипольный момент): .
Типы диэлектриков. Диэлектрики – вещества, которые при обычных условиях не проводят электрический ток, в диэлектриках нет свободных электрических зарядов. Диэлектрики делятся на 3 типа: неполярные, полярные, ионные. У неполярных диэлектриков дипольные моменты молекул в отсутствии внешнего электрического поля равны нулю – H2, N2, C6H6. У поляризованных диэлектриков молекулы обладают постоянным дипольным моментом и без внешнего электрического поля – H20. Ионные диэлектрики – это вещества, молекулы которых имеют ионное строение. В кристаллах этих веществ нельзя выделить отдельные молекулы, их можно рассматривать как систему 2х вставленных друг в друга ионных решеток – одна заряжена положительно, другая отрицательно – NaCl, KCl.