
- •1) Электрические свойства тел. Закон сохранения электрического заряда.
- •2)Закон Кулона.
- •3)Напряженность электростатического поля. Принцип суперпозиции электростатических полей.
- •4)Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме.
- •5)Применение теоремы Остроградского-Гаусса к расчету электростатических полей тел различной формы.
- •6)Работа по перемещению заряда в электростатическом поле.
- •7)Циркуляция вектора напряженности электростатического поля. Признак потенциальности поля.
- •8)Потенциал электростатического поля.
- •9)Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- •10)Электрический диполь. Типы диэлектриков.
- •11)Свободные и связанные заряды. Поляризация диэлектриков.
- •12)Напряженность поля в диэлектрике.
- •13) Электрическое смещение. Теорема Остроградского-Гаусса для электростатического поля в диэлектрике.
- •14)Условия на границе раздела двух диэлектриков.
- •15) Сегнетоэлектрики. Пьезоэлектрический эффект.
- •16) Проводники в электростатическом поле. Поле внутри проводника и у его поверхности.
- •17) Распределение зарядов в проводнике.
- •18)Электроемкость уединенного проводника.
- •19) Конденсаторы. Соединение конденсаторов.
- •20)Энергия электростатического поля.
- •21) Сила и плотность тока. Электродвижущая сила и напряжение.
- •22) Закон Ома для однородного участка цепи. Сопротивление проводников.
- •23) Работа и мощность тока.
- •24) Закон Джоуля-Ленца.
- •25)Закон Ома для неоднородного участка цепи.
- •26) Правила Кирхгофа для разветвленных цепей.
- •27.Классическая электронная теория проводимости металлов.
- •28) Объяснение законов Ома, Джоуля-Ленца и Видемана-Франца из электронных представлений.
- •29)Температурная зависимость сопротивления металлов. Сверхпроводимость.
- •30) Контактная разность потенциалов. Законы Вольта.
- •31)Термоэлектрические явления Зеебека, Пельтье и Томсона.
- •32) Электролиз. Законы Фарадея.
- •33) Несамостоятельный газовый разряд.
- •34) Самостоятельный газовый разряд и его виды.
- •36. Магнитное поле и его характеристики.
- •37. Закон Био-Савара- Лапласа и его применение к расчету магнитного поля.
- •38) Закон Ампера. Взаимодействие параллельных токов.
- •39)Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •40)Ускорители заряженных частиц. Эффект Холла.
- •41)Циркуляция вектора магнитной индукции и ее применение к расчету магнитного поля.
- •42. Поток вектора магнитной индукции. Теорема Гаусса о потоке вектора магнитной индукции.
- •43. Работа по перемещению проводника и контура с током в магнитном поле.
- •44. Явление электромагнитной индукции. Опыты Фарадея. Закон Фарадея. Правило Ленца.
- •45) Индуктивность контура. Явление само- и взаимоиндукции.
- •46)Энергия магнитного поля. Объемная плотность энергии.
- •47)Магнитные моменты электронов и атомов. Гиромагнитное отношение.
- •48)Диа- и парамагнетизм. Намагниченность.
- •49) Магнитное поле в веществе. Ферромагнетики и их свойства.
- •50)Основы теории Максвелла для электромагнитного поля. Вихревое электрическое поле. Ток смещения.
- •51) Уравнения Максвелла для электромагнитного поля в интегральной форме.
- •52) Электромагнитные волны и их свойства. Энергия электромагнитных волн. Вектор Умова-Пойтинга.
46)Энергия магнитного поля. Объемная плотность энергии.
Энергия магнитного поля (максимальное энергетическое произведение, объемная плотность энергии) — энергия, связанная с магнитным полем и преобразующаяся в другие формы энергии при изменении магнитного поля. Энергия магнитного поля равна работе, которая затрачивается на создание этого поля.
Проводник, c протекающим по нему электрическим ток, всегда окружен магнитным полем, причем магнитное поле исчезает и появляется вместе с исчезновением и появлением тока. Магнитное поле, подобно электрическому, является носителем энергии. Логично предположить, что энергия магнитного поля совпадает с работой, затрачиваемой током на создание этого поля.
Объемная плотность энергииэлектростатического поляЭто физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеем w=W/Sd=1/2*CU2/Sd.
47)Магнитные моменты электронов и атомов. Гиромагнитное отношение.
Магнитный момент электрона складывается из орбитального и спинового магнитных моментов. Магнитный момент атома, следовательно, складывается из магнитных моментов входящих в его состав электронов и магнитного момента ядра (обусловлен магнитными моментами входящих в ядро протонов и нейтронов). Однако магнитные моменты ядер в тысячи раз меньше магнитных моментов электронов, поэтому ими пренебрегают. Таким образом, общий магнитный момент атома (молекулы) pa равен векторной сумме магнитных моментов (орбитальных и спиновых) входящих в атом (молекулу) электронов: Pa=
Еще раз обратим внимание на то, что при рассмотрении магнитных моментов электронов и атомов мы пользовались классической теорией, не учитывая ограничений, накладываемых на движение электронов законами квантовой механики. Однако это не противоречит полученным результатам, так как для дальнейшего объяснения намагничивания веществ существенно лишь то, что атомы обладают магнитными моментами.
Гиромагни́тное отноше́ние (магнитомехани́ческое отноше́ние) — отношение дипольного магнитного момента элементарной частицы (или системы элементарных частиц) к её механическому моменту.
Это отношение, определяемое универсальными постоянными, одинаково для любой орбиты, хотя для разных орбит значения v и r различны.
Для различных состояний атомной системы гиромагнитное отношение определяется формулой: , где g — множитель Ланде, γ0 — единица гиромагнитного отношения.
48)Диа- и парамагнетизм. Намагниченность.
Намагни́ченность — векторная физическая величина, характеризующая магнитное состояние макроскопического физического тела. Обозначается обычно М или J. Определяется как магнитный момент единицы объёма вещества:M=m/V, Здесь, M — вектор намагниченности; m - вектор магнитного момента; V — объём.
ПАРАМАГНЕТИЗМ (от пара... и магнетизм), свойство вещества намагничиваться во внешнем магнитном поле в направлении поля. Парамагнетизмом обладают вещества (парамагнетики), атомы (ионы) которых имеют магнитный момент, но в которых отсутствует самопроизвольная намагниченность. При намагничивании атомные магнитные моменты выстраиваются по направлению поля (в отсутствие поля они дезориентированы тепловым движением). Магнитная восприимчивость парамагнитного вещества ?>0; у многих веществ она не зависит от поля, но сильно зависит от температуры Т (см. Кюри закон), у щелочных металлов зависимость ? от Т слаба (см. Паули парамагнетизм). При температурах выше Кюри точки (или Нееля точки) ферро-, антиферро- и ферримагнетики парамагнитны (см. Кюри - Вейса закон). Кроме атомного существует также ядерный парамагнетизм.
Диамагнетизм — один из видов магнетизма, который проявляется в намагничивании вещества навстречу направлению действующего на него внешнего магнитного поля.
Диамагнетизм свойствен всем веществам. Диамагнетизм можно рассматривать как следствие индукционных токов, наводимых в заполненных электронных оболочках ионов внешним магнитным полем. Эти токи создают в каждом атоме индуцированный магнитный момент, направленный, согласно правилу Ленца, навстречу внешнему полю (независимо от того, имелся ли первоначально собственный момент или нет и как он был ориентирован). Диамагнетизм, однако, невозможно описать с позиции только классической физики, это предельно квантовомеханическое явление. Идеальный диамагнетизм носит некооперативный характер и характеризуется отрицательной, не зависящей от температуры магнитной восприимчивостью. Диамагнетизм входит в состав любого магнитного состояния вещества, но он обычно пренебрежимо мал по сравнению с магнетизмом, обусловленным наличием спонтанных магнитных моментов в системе. У чисто диамагнитных веществ электронные оболочки (молекул) не обладают постоянным моментом. Моменты, создаваемые отдельными электронами в таких в отсутствие внешнего поля взаимно скомпенсированы. В частности, это имеет место в ионах и молекулах с целиком заполненными электронными оболочками, например, в инертных газах, в молекулах.