
- •1) Электрические свойства тел. Закон сохранения электрического заряда.
- •2)Закон Кулона.
- •3)Напряженность электростатического поля. Принцип суперпозиции электростатических полей.
- •4)Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме.
- •5)Применение теоремы Остроградского-Гаусса к расчету электростатических полей тел различной формы.
- •6)Работа по перемещению заряда в электростатическом поле.
- •7)Циркуляция вектора напряженности электростатического поля. Признак потенциальности поля.
- •8)Потенциал электростатического поля.
- •9)Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- •10)Электрический диполь. Типы диэлектриков.
- •11)Свободные и связанные заряды. Поляризация диэлектриков.
- •12)Напряженность поля в диэлектрике.
- •13) Электрическое смещение. Теорема Остроградского-Гаусса для электростатического поля в диэлектрике.
- •14)Условия на границе раздела двух диэлектриков.
- •15) Сегнетоэлектрики. Пьезоэлектрический эффект.
- •16) Проводники в электростатическом поле. Поле внутри проводника и у его поверхности.
- •17) Распределение зарядов в проводнике.
- •18)Электроемкость уединенного проводника.
- •19) Конденсаторы. Соединение конденсаторов.
- •20)Энергия электростатического поля.
- •21) Сила и плотность тока. Электродвижущая сила и напряжение.
- •22) Закон Ома для однородного участка цепи. Сопротивление проводников.
- •23) Работа и мощность тока.
- •24) Закон Джоуля-Ленца.
- •25)Закон Ома для неоднородного участка цепи.
- •26) Правила Кирхгофа для разветвленных цепей.
- •27.Классическая электронная теория проводимости металлов.
- •28) Объяснение законов Ома, Джоуля-Ленца и Видемана-Франца из электронных представлений.
- •29)Температурная зависимость сопротивления металлов. Сверхпроводимость.
- •30) Контактная разность потенциалов. Законы Вольта.
- •31)Термоэлектрические явления Зеебека, Пельтье и Томсона.
- •32) Электролиз. Законы Фарадея.
- •33) Несамостоятельный газовый разряд.
- •34) Самостоятельный газовый разряд и его виды.
- •36. Магнитное поле и его характеристики.
- •37. Закон Био-Савара- Лапласа и его применение к расчету магнитного поля.
- •38) Закон Ампера. Взаимодействие параллельных токов.
- •39)Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •40)Ускорители заряженных частиц. Эффект Холла.
- •41)Циркуляция вектора магнитной индукции и ее применение к расчету магнитного поля.
- •42. Поток вектора магнитной индукции. Теорема Гаусса о потоке вектора магнитной индукции.
- •43. Работа по перемещению проводника и контура с током в магнитном поле.
- •44. Явление электромагнитной индукции. Опыты Фарадея. Закон Фарадея. Правило Ленца.
- •45) Индуктивность контура. Явление само- и взаимоиндукции.
- •46)Энергия магнитного поля. Объемная плотность энергии.
- •47)Магнитные моменты электронов и атомов. Гиромагнитное отношение.
- •48)Диа- и парамагнетизм. Намагниченность.
- •49) Магнитное поле в веществе. Ферромагнетики и их свойства.
- •50)Основы теории Максвелла для электромагнитного поля. Вихревое электрическое поле. Ток смещения.
- •51) Уравнения Максвелла для электромагнитного поля в интегральной форме.
- •52) Электромагнитные волны и их свойства. Энергия электромагнитных волн. Вектор Умова-Пойтинга.
44. Явление электромагнитной индукции. Опыты Фарадея. Закон Фарадея. Правило Ленца.
Явление электромагнитной индукции.
Как известно, электрические токи порождают вокруг себя магнитное поле. Связь магнитного поля с током дала толчок к многочисленным попыткам возбудить ток в контуре с помощью магнитного поля. Эта фундаментальное открытие было блестяще сделано в 1831 г. английским физиком М. Фарадеем, который открыл явленение электромагнитной индукции. Оно говорит о том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.
Приведем классические опыты Фарадея, с помощью которых было открыто явление электромагнитной индукции.
Опыты Фарадея
Опыт I . Если в соленоид, который замкнут на гальванометр, вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания мы видим отклонение стрелки гальванометра (возникает индукционный ток); при этом отклонения стрелки при вдвигании и выдвигании магнита имеют противоположные направления. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При смене в опыте полюсов магнита направление отклонения стрелки также изменится. Для получения индукционного тока можно оставлять магнит неподвижным, тогда нужно относительно магнита перемещать соленоид.
Опыт II. Концы одной из катушек, которая вставлена одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. В моменты включения или выключения тока наблюдается отклонение стрелки гальванометра, а также в моменты его уменьшения или увеличения, а также при перемещении катушек друг относительно друга (рис. 1б). Направления отклонений стрелки гальванометра также имею противоположные направления при включении или выключении тока, его увеличении или уменьшении, приближении или удалении катушек.
Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызва¬вшему этот индукционный ток.
Закон Фарадея может быть выведен из закона сохранения энергии, как это впервые сделал Г. Гельмгольц. Возьмем проводник с током I, помещенный в однородное магнитное поле, которое перпендикулярное плоскости контура, и может свободно двигаться. Под действием силы Ампера F, направление которой показано на рисунке, проводник передвигается на отрезок dx. Значит, сила Ампера производит работу dA=IdФ, где dФ — пересеченный проводником магнитный поток. Используя закон сохранения энергии, работа источника тока за время dt( ξIdt ) будет складываться из работы на теплоту Джоуля-Ленца (I2Rdt) и работы по перемещению проводника в магнитном поле (IdФ): где R — полное сопротивление контура. Значит есть как раз закон Фарадея.
45) Индуктивность контура. Явление само- и взаимоиндукции.
Электрический ток, который течет в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, согласно закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому прямо пропорционален току I в контуре:
Ф=LI. где коэффициент пропорциональности L называется индуктивностью контура.
При изменении в контуре силы тока будет также изменяться и сцепленный с ним магнитный поток; значит, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией. Из выражения Ф=LI, задается единица индуктивности генри (Гн): 1 Гн — индуктивность контура, магнитный поток самоиндукц
ии которого при токе в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В•c/А .
Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции.