Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по математике.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.33 Mб
Скачать
  1. Вопрос: Свойства функций, непрерывных на отрезке. Точки разрыва и их классификация

Свойство 1: Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке выполняется условие - .Доказательство этого свойства основано на том, что функция, непрерывная в точке , ограничена в некоторой ее окрестности, а если разбивать отрезок на бесконечное количество отрезков, которые “стягиваются” к точке , то образуется некоторая окрестность точки . Свойство 2: Функция, непрерывная на отрезке , принимает на нем наибольшее и наименьшее значения.Т.е. существуют такие значения и , что , причем .Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например - ).Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке. Свойство 3: Функция, непрерывная на отрезке , принимает на этом отрезке все значения между двумя произвольными величинами. Свойство 4: Если функция непрерывна в точке , то существует некоторая окрестность точки , в которой функция сохраняет знак. Свойство 5: Если функция - непрерывная на отрезке и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где .Т.е. если , то .Определение. Функция называется равномерно непрерывной на отрезке , если для любого существует такое, что для любых точек и таких, что верно неравенство .Отличие равномерной непрерывности от “обычной” в том, что для любого  существует свое , не зависящее от , а при “обычной” непрерывности зависит от и . Свойство 6: Теорема Функция, непрерывная на отрезке, равномерно непрерывна на нем. (Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.) Свойство 7: Если функция определена, монотонна и непрерывна на некотором промежутке, то и обратная ей функция тоже однозначна, монотонна и непрерывна. Пример. Исследовать на непрерывность функцию и определить тип точек разрыва, если они есть. в точке функция непрерывна в точке точка разрыва 1 - го рода

 

Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0 является точкой разрыва, если  функция не определена в этой точке, или не является в ней непрерывной.

Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом.
Если односторонний предел (см. выше) , то функция называется непрерывной справа.

 

 

 

 

 

  х0

Если односторонний предел (см. выше) , то функция называется непрерывной слева.

 

 

 

 

                                                                     х0

 Определение. Точка х0 называется точкой разрыва функции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке. Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.

  Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее. Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют устранимой точкой разрыва, но подробнее об этом поговорим ниже. Определение. Точка х0 называется точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен. Пример. Функция Дирихле (Дирихле Петер Густав(1805-1859) – немецкий математик, член- корреспондент Петербургской АН 1837г)

не является непрерывной в любой точке х0. Пример. Функция f(x) =  имеет в точке х0 = 0 точку разрыва 2 – го рода, т.к.

.

 

Пример. f(x) = Функция не определена в точке х = 0, но имеет в ней конечный предел , т.е. в точке х = 0 функция имеет точку разрыва 1 – го рода. Это – устранимая точка разрыва, т.к. если доопределить функцию:

График этой функции:

  Пример.  f(x) = =

 

                                                                     

Эта функция также обозначается sign(x) – знак х. В точке х = 0 функция не определена. Т.к. левый и правый пределы функции различны, то точка разрыва – 1 – го рода. Если доопределить  функцию в точке х  = 0, положив f(0) = 1, то функция будет непрерывна справа, если положить f(0) = -1, то функция будет непрерывной слева, если положить f(x) равное какому- либо числу, отличному от 1 или –1, то функция не будет непрерывна ни слева, ни справа, но во всех случаях  тем не менее  будет иметь в точке х = 0 разрыв 1 – го рода. В этом примере точка разрыва 1 – го рода не является устранимой. Таким образом, для того, чтобы точка разрыва 1 – го рода была устранимой, необходимо, чтобы односторонние пределы справа и слева были конечны и равны, а  функция была бы в этой точке не определена.

  1. вопрос: Бесконечно малые и бесконечно большие функции. Их свойства, связь между ними. Односторонние пределы.

БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА

Функция y=f(x) называется бесконечно малой при x→a или при x→∞, если или , т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю.

П римеры.

  1. Функция f(x)=(x-1)2 является бесконечно малой при x→1, так как (см. рис.).

  2. Функция f(x) = tgx – бесконечно малая при x→0.

  3. f(x) = ln (1+x)– бесконечно малая при x→0.

  4. f(x) = 1/x– бесконечно малая при x→∞.

Установим следующее важное соотношение: Теорема. Если функция y=f(x) представима при x→aв виде суммы постоянного числа b и бесконечно малой величины α(x): f (x)=b+ α(x) то . Обратно, если , то f (x)=b+α(x), где a(x) – бесконечно малая при x→a. Доказательство.

  1. Докажем первую часть утверждения. Из равенства f(x)=b+α(x) следует |f(x) – b|=| α|. Но так как a(x) – бесконечно малая, то при произвольном ε найдется δ – окрестность точки a, при всех x из которой, значения a(x) удовлетворяют соотношению |α(x)|<ε. Тогда |f(x) – b|< ε. А это и значит, что .

  2. Если , то при любом ε>0 для всех х из некоторой δ – окрестность точки a будет |f(x) – b|< ε. Но если обозначимf(x) – b= α, то |α(x)|<ε, а это значит, что a – бесконечно малая.

Рассмотрим основные свойства бесконечно малых функций. Теорема 1. Алгебраическая сумма двух, трех и вообще любого конечного числа бесконечно малых есть функция бесконечно малая. Доказательство. Приведем доказательство для двух слагаемых. Пусть f(x)=α(x)+β(x), где и . Нам нужно доказать, что при произвольном как угодно малом ε>0 найдется δ>0, такое, что для x, удовлетворяющих неравенству |x – a|<δ, выполняется |f(x)|< ε. Итак, зафиксируем произвольное число ε>0. Так как по условию теоремы α(x) – бесконечно малая функция, то найдется такое δ1>0, что при |x – a|<δ1 имеем |α(x)|< ε/2. Аналогично, так как β(x) – бесконечно малая, то найдется такое δ2>0, что при |x – a|<δ2 имеем | β(x)|< ε/2. Возьмем δ=min{ δ1, δ2}.Тогда в окрестности точки a радиуса δбудет выполняться каждое из неравенств |α(x)|< ε/2 и | β(x)|< ε/2. Следовательно, в этой окрестности будет |f(x)|=| α(x)+β(x)| ≤ |α(x)| + | β(x)| < ε/2 + ε/2= ε, т.е. |f(x)|<ε, что и требовалось доказать. Теорема 2. Произведение бесконечно малой функции a(x) на ограниченную функцию f(x) при x→a (или при x→∞) есть бесконечно малая функция. Доказательство. Так как функция f(x) ограничена, то существует число М такое, что при всех значениях x из некоторой окрестности точки a|f(x)|≤M. Кроме того, так как a(x) – бесконечно малая функция при x→a, то для произвольного ε>0 найдется окрестность точки a, в которой будет выполняться неравенство |α(x)|< ε/M. Тогда в меньшей из этих окрестностей имеем | αf|< ε/M= ε. А это и значит, что af – бесконечно малая. Для случая x→∞ доказательство проводится аналогично. Из доказанной теоремы вытекают: Следствие 1. Если и , то . Следствие 2. Если и c=const, то . Теорема 3. Отношение бесконечно малой функции α(x) на функцию f(x), предел которой отличен от нуля, есть бесконечно малая функция.

Доказательство. Пусть . Тогда 1/f(x) есть ограниченная функция. Поэтому дробь есть произведение бесконечно малой функции на функцию ограниченную, т.е. функция бесконечно малая.

СООТНОШЕНИЕ МЕЖДУ БЕСКОНЕЧНО МАЛЫМИ И БЕСКОНЕЧНО БОЛЬШИМИ ФУНКЦИЯМИ

Теорема 1. Если функция f(x) является бесконечно большой при x→a, то функция 1/f(x) является бесконечно малой при x→a. Доказательство. Возьмем произвольное число ε>0 и покажем, что при некотором δ>0 (зависящим от ε) при всех x, для которых |x – a|<δ, выполняется неравенство , а это и будет означать, что 1/f(x) – бесконечно малая функция. Действительно, так как f(x) – бесконечно большая функция при x→a, то найдется δ>0 такое, что как только |x – a|<δ, так |f(x)|>1/ ε. Но тогда для тех же x . Примеры.

  1. Ясно, что при x→+∞ функция y=x2+1 является бесконечно большой. Но тогда согласно сформулированной выше теореме функция – бесконечно малая при x→+∞, т.е. .

  2. .

Можно доказать и обратную теорему. Теорема 2. Если функция f(x) - бесконечно малая при x→a (или x→∞) и не обращается в нуль, то y=1/f(x) является бесконечно большой функцией. Доказательство теоремы проведите самостоятельно. Примеры.

  1. .

  2. .

  3. , так как функции и - бесконечно малые при x→+∞, то , как сумма бесконечно малых функций есть функция бесконечно малая. Функция же является суммой постоянного числа и бесконечно малой функции. Следовательно, по теореме 1 для бесконечно малых функций получаем нужное равенство.

Таким образом, простейшие свойства бесконечно малых и бесконечно больших функций можно записать с помощью следующих условных соотношений: A≠ 0

.

Свойства бесконечно малых функций

Опираясь на правила вычисления пределов, можно сформулировать свойства бесконечно малых: алгебраическая сумма и произведение конечного числа бесконечно малых функций при xx0, а также произведение бесконечно малой функции на ограниченную функцию являются бесконечно малыми функциями при xx0:

1.

2.

3.

4.

Все сказанное о бесконечно малых функциях при xx0 справедливо и для бесконечно малых функций при x → ∞, x → + ∞, x → – ∞, xx0 – 0, xx0 + 0.

Связь между бесконечно большой и бесконечно малой функциями

   Если f (x) — бесконечно большая функция, то есть бесконечно малая функция в этой же точке.    В самом деле, пусть , это означает, что

( K > 0) ( δ = δ(K)> 0) ( 0 < | x - x0 | < δ ) : | f (x) | > K .

   Так как |f (x)| > K , то . Будем считать, что , тогда

( ε > 0) ( δ = δ(ε)> 0) ( 0 < | x - x0 | < δ ) : 1/| f (x)| <ε .

Это означает, что .

Односторонние пределы

  Число А называется левым пределом функции f (x) в точке х0, если для любого как угодно малого положительного числа ε можно найти зависящее от этого ε положительное число δ, что для всех значений аргумента меньших чем х0 и отличающихся от него на величину меньшую δ, значения функции отличаются от числа А на величину, меньшую чем ε:

( ε > 0 ) ( δ = δ (ε) > 0 ) ( x0 - δ < x < x0) : | f (x) – A | < ε.

  Число B называется правым пределом функции f (x) в точке х0, если для любого как угодно малого положительного числа ε можно найти зависящее от этого ε положительное число δ, что для всех значений аргумента больших, чем х0 и отличающихся от него на величину меньшую чем δ, значения функции отличаются от числа В на величину, меньшую чем ε:

( ε > 0 ) ( δ = δ (ε) > 0 ) ( x0< x < x0+ δ) : | f (x) – В | < ε

   Левый и правый пределы функции в данной точке условно записывают как

и

   Теорема. Функция f (x) имеет в точке х0 конечный предел тогда и только тогда, когда в этой точке существуют конечные правый и левый пределы, и они равны. В этом случае предел функции равен односторонним пределам.        Доказательство. Пусть

Тогда, согласно определению предела функции слева и справа,

( ε > 0 ) ( δ1 = δ1 (ε) > 0 ) ( x0– δ1 < x < x0) : | f (x) – A | < ε.

( ε > 0 ) ( δ2 = δ2 (ε) > 0 ) ( x0< x < x0+ δ2) : | f (x) – A |<ε

Возьмем δ = min{δ12}. Тогда для всех х, удовлетворяющих неравенствам 0 < | х - х0 | < δ, будет выполняться неравенство | f (x) - A | < ε. Что и означает

  Обратно, пусть

Тогда, по определению предела функции в точке, для любого как угодно малого положительного числа ε > 0 существует зависящее от этого ε число δ > 0 такое, что для всех х, удовлетворяющих неравенству 0 < | х - х0| < δ, выполняется неравенство | f (х) – А | < ε. Тем самым, как для х0– δ < х < х0, так и для х0 < x < х0 + δ, справедливо неравенство | f (х) – А | < ε. А это,согласно определению односторонних пределов, означает, что

  1. вопрос: Расстояние от точки до плоскости, угол между плоскостями. Расстояние от точки до плоскости — равно длине перпендикуляра, опущенного из точки на плоскость. Пусть плоскость задана уравнением и дана точка . Тогда расстояние от точки до плоскости определяется по формуле:

Двугранный угол между плоскостями равен углу образованному нормальными векторами этих плоскостей. Двугранный угол между плоскостями равен углу образованному прямыми

l

1 и

l

2, лежащими в соответствующих плоскостях и перпендикулярными линии пересечения плоскостей. Если заданы уравнения плоскостей A1 x+ B1y+ C1z+ D1 = 0 и A2x+ B2y+ C2z+ D2 = 0, то угол между плоскостями можно найти, используя следующую формулу

cos α

|A1·A2 + B1·B2 + C1·C2|

(A12 + B12 + C12)1/2(A22 + B22 + C22)1/2

  1. вопрос: Уравнение плоскости в пространстве ( общее, через 3 точки, в отрезках, на осях, нормальное)

Определение. Плоскость - есть поверхность, полностью содержащая, каждую прямую, соединяющую любые её точки.