Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_mikrobiologii (1).doc
Скачиваний:
0
Добавлен:
24.12.2019
Размер:
674.3 Кб
Скачать

102. Значение фото- и хемосинтеза.

Значение фотосинтеза очень велико, так как, во-первых, растения и другие фотосинтезирующие организмы превращают энергию солнечного света в энергию химических связей органических соединений, которая используется всеми остальными живыми существами планеты; во-вторых, они поставляют в атмосферу кислород, служащий для окисления органических вещества извлечения при помощи этого запасенной в них химический энергии аэробными клетками; в-третьих, некоторые виды растений в содружестве (симбиозе) с азотфиксирующими бактериями переводят атмосферный азот в состав молекул аммиака, его солей и органических азотсодержащих соединений. Солнечную энергию способны непосредственно использовать только клетки зеленых растений, одноклеточных водорослей, зеленых и пурпурных бактерий. За счет этой энергии они синтезируют органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.

Такой биосинтез, который происходит благодаря энергии света, и называют фотосинтезом. Исходными веществами для фотосинтеза служат диоксид углерода атмосферы и вода. Часть синтезируемой при фотосинтезе глюкозы является источником энергии для всех последующих процессов жизнедеятельности растения, в том числе и его роста (развития).

Значение хемосинтеза также велико. Сложные органические вещества для построения своих тел создают не только зеленые растения, но и бактерии, которые не содержат хлорофилла. Этот процесс – хемосинтез – осуществляется благодаря энергии, выделяющейся при химических реакциях окисления различных неорганических соединений: сероводорода, оксида железа и др. Образующаяся при этом энергия запасается в форме аденозинтрифосфорной кислоты. Хемосинтез открыл известный русский микробиолог С.Н. Виноградский в 1887 г.

Примером хемосинтеза может служить окисление сероводорода в водоемах со «стоячей» водой (непроточных). В этих водоемах, содержащих сероводород, живут бесцветные серобактерии. Энергию (Е), которая необходима для синтеза органических соединений из диоксида углерода, они получают в результате окисление сероводорода: свободная сера, выделяющаяся в результате этого, накапливается в клетках бактерий. Если сероводорода впоследствии не хватает, бесцветные серобактерии производят дальнейшее окисление содержащейся в них свободной серы до серной кислоты: образовавшаяся энергия также используется для осуществления синтеза органического вещества из диоксида углерода.

К хемотрофам относятся такие автотрофные организмы, как хемотрофные бактерии: водородные, нитрифицирующие, железобактерии, серобактерии и др.

103. Роль атф в метаболизме мо и ее образование; субстратное фосфолирование и схема Эмбдена-Мейергофа-Париаса.

Для полной характеристики микроорганизмов используют понятие тип метаболизма. Различия в типах метаболизма определенных групп микроорганизмов обусловлены особенностями конструктивного и спецификой энергетического обменов. В зависимости от используемого источника энергии для получения АТФ микроорганизмы делят на фототрофов (используют энергию света) и хемотрофов (используют энергию химических реакций).

Процесс образования АТФ называется фосфорилированием; он осуществляется в митохондриях (у эукариот) и ферментных системах, локализованных на цитоплазмаческой мембране (у прокариот). Механизм образования, АТФ у разных групп микроорганизмов неодинаков. Различают субстратное, окислительное и фотофосфорилирование. Любой тип фосфорилирования обязательно сопряжен с переносом электронов в ходе окислительно-восстановительных реакций энергитического обмена. При этом одни микроорганизмы в качестве доноров электронов (водорода) используют неорганические, другие - органические соединения. Соответственно первые называются литотрофами, вторые - органотрофами.

Субстратное фосфорилирование (биохимическое), синтез богатых энергией фосфорных соединений за счёт энергии окислительно-восстановительных реакций гликолиза (катализируемых фосфоглицеральдегиддегидрогеназой и енолазой) и при окислении a-кетоглутаровой кислоты в трикарбоновых кислот цикле (под действием a-кетоглутаратдегидрогеназы и сукцинаттиокиназы). Для бактерий описаны случаи С. ф. при окислении пировиноградной кислоты. С. ф., в отличие от фосфорилирования в цепи переноса электронов (см. Окислительное фосфорилирование), не ингибируется "разобщающими" ядами (например, динитрофенолом) и не связано с фиксацией ферментов в мембранах митохондрий. Вклад С. ф. в клеточный фонд АТФ в аэробных условиях значительно меньше, чем вклад фосфорилирования в цепи переноса электронов.

Глико́лиз (фосфотриозный путь, или шунт Эмбдена — Мейерхофа, или путь Эмбдена-Мейергофа-Парнаса ) — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ. Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (пирувата), гликолиз в анаэробных условиях ведёт к образованию молочной кислоты (лактата). Гликолиз является основным путём катаболизма глюкозы в организме животных.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]