
- •1.Какие разделы включает микробиология и что является предметом их изучения. Значение мо в природе.
- •3.Основные открытия, сделанные л.Пастером, положившие начало совр. Микробиол.
- •4 (106).Генетический аппарат прокариот.
- •5. Какие признаки положены в основу классификации живых существ.
- •6.Основные различия м/у прокариотами и эукариотами.
- •7.Методы изучения микроорганизмов.
- •8. Какую функцию выполняют мо в круговороте азота. Основные пути превращения соединений азота и мо осуществляющие эти процессы.
- •9. Наследственный тип изменчивости.
- •10.На какие основные морфологические формы мо вы знаете.
- •11. На какие морфологические формы делятся кокки.
- •12. На какие группы делятся палочковидные бактерии.
- •13. Извитые формы бактерий.
- •14. Назовите основные группы новых форм бактерий.
- •15. Опишите основные морфологические и физиологические особенности основных групп актиномицетов.
- •16. Какие компоненты бактериальной клетки относится клеточной оболочке, какие образуют протопласт.
- •17. Назовите основные отличительные особенности структуры бактериальной клеточной стенки.
- •19. Капсулы и слизи.
- •20. Типы жгутикования микроорганизмов.
- •21. Способы размножения бактерий.
- •22.Структура нуклеотида бактериальной клетки
- •23. Основные компоненты цитоплазмы бактериальной клетки.
- •25.Номенклатура и систематика бактерий.
- •26. Дайте характеристику бактерий, относящихся к отделу Firmicutes
- •27.Дайте характеристику бактерий, относящихся к отделу Gracilicutes
- •28. Опишите способы передвижения бактерий.
- •29. Особенности образования, строения и состава эндоспор.
- •30. Положение и распространение грибов в природе. Основные отличия от растений.
- •31. Каковы морфологические отличия мицелиальных грибов и дрожжей.
- •32. Способы размножения грибов.
- •33.Классификация грибов.
- •34.Зигомицеты. Основные представители этого класса. Строение и способы размножения
- •35. Аскомицеты. Основные представители.
- •36. Базидиомицеты.
- •37. Класс Дейтеромицеты
- •38. Характерные особенности вирусов.
- •39. Формы существования, структура, особенности хим.Состава и репродукции вирусов.
- •40. Вирусы растений.
- •41. Вирусы животных и человека.
- •42. Вирусы микроорганизмов.
- •43. Вирулентные и умеренные фаги.
- •44. Ненаследственный тип изменчивости.
- •45. Накопительные культуры микроорганизмов и методы их получения.
- •46. Чистые культуры микроорганизмов, их значение и методы получения.
- •47. Основные задачи, связанные с хранение чистых культур микроорганизмов.
- •48. Питательные среды и их классификация, основанная на составе.
- •49. Классификация питательных сред по назначению.
- •50. Как классифицируются среды по физическому состоянию и применению.
- •52. Периодический и непрерывный способы глубинного культивирования. Закономерности роста микроорганизмов при периодическом культивировании.
- •53.Основные метода стерилизации
- •54. Действие температуры на рост микроорганизмов. Разделение на группы в зависимости от температуры.
- •55. Каково значение влажности для микроорганизмов. Показатель активности воды.
- •56. Значение осмотического давления для жизнедеятельности.
- •57. Значение окислительно-восстановительного потенциала и концентрации водородных ионов.
- •58. Влияние электромагнитных излучений.
- •59. Ассоциативные формы симбиоза(мутуализм, метабиоз, синергизм, комменсализм)
- •60. Антагонистические формы симбиоза (антагонизм, антибиоз, паразитизм, хищничество)
- •61. Влияние антимикробных веществ на мо-мы.
- •62. Потребности микроорганизмов в источнике углерода. Автотрофы, гетеротрофы.
- •65. Потребности микроорганизмов в ионах металлов, факторах роста и кмслороде.
- •66. Способы питания и поступления в клетку различных веществ
- •67.Механизм проникновения питательных веществ в клетку.(Пассивная диффузия).
- •68. Механизм проникновения питательных веществ в клетку (облегченная диффузия, активный транспорт).
- •69.Механизм губительного действия дезинфицирующих химических веществ на мо. Классификация дизенфиктантов, основанная на механизме действия.
- •70. Основные мономеры конструктивного обмена и пути их образования
- •71. Энергетические ресурсы, используемые микроорганизмами.
- •73. Получение энергии в процессе брожения. Основные стадии
- •74. Основные стадии получения энергии в процессе дыхания.
- •75. Механизм получения атф при помощи трансмембранного электрохимического потенциала. (хемиоосматическая теория Митчелла.)
- •76. Основные способы существования и типы жизни у прокариот
- •77. Общая характеристика процессов брожения
- •78. Гомоферментативное молочнокислое брожение. Хемизм и энергетика процесса
- •79.Гомоферментативные молочнокислые бактерии
- •80. Использование молочнокислого брожения в пищевой промышленности.
- •81. Гетероферментативное молочнокислое брожение. Окислительный пентозо-фосфатный путь сбраживания углеводов. Энергетика процесса.
- •82.Спиртовое брожение. Основные этапы. Энергетика процесса
- •83. Микроорганизмы, вызывающие спиртовое брожение. Произ-во, связанные с их жизнедеятельностью
- •84. Основные реакции пропионовокислого брожения. Пути получения энергии пропионовокислыми бактериями.
- •85. Бактерии, вызывающие, пропионовокислое брожение.
- •86.Маслянокислое брожение и бактерии, вызывающие маслянокислое брожение.
- •87. Ацетоно-бутиловое брожение. Хемизм и энергетика процесса. Морфологические и физиологические особенности возбудителей данного типа брожения.
- •88.Образование уксусной кислоты и уксуснокислые бактерии. Способы производства уксуса.
- •89. Образование органических кислот мицелляльными грибами. Производство лимонной кислоты. Возбудители процесса.
- •90. Эндоспоры и цисты бактерий, их структура и функции.
- •91(63,96). Влияние кислотности среды на развитие отдельных микроорганизмов. Критическое значение рН в жизнедеятельности микроорганизмов.
- •92(98) Практическое использование симбиоза и антагонизма в сельском хозяйстве и медицине.
- •93. Влияние давления, химических веществ, радиации на микроорганизмы.
- •94. Отношение различных микроорганизмов к кислороду.
- •95. Осмофилы и галлофилы.
- •96. Влияние кислотности среды на развитие отдельных микроорганизмов.
- •97.Различие реакций вегетативных клеток мо и эндоспор бактерий на внешние воздействия (темп, дезинфицирующие вещества, экстремальные значения рН и др.)
- •99. Источники углерода, азота и других элементов для жизнедеятельности микроорганизмов.
- •100. Важнейшие соединения клеток микроорганизмов и их физиологическая роль.
- •101. Значение и взаимосвязь процессов катаболизма (энергодающий процесс) и анаболизма (энергопотребляющий процесс) у мо.
- •102. Значение фото- и хемосинтеза.
- •103. Роль атф в метаболизме мо и ее образование; субстратное фосфолирование и схема Эмбдена-Мейергофа-Париаса.
- •104. Роль атф и её образование в цикле трикарбоновых кислот и электротранспортной цепи.
- •105.Сходства и различия брожения, дыхания и анаэробного дыхания.
- •107.Маслянокислое брожение пектиновых веществ и его значение в первичной обработке лубоволокнистых растений.
- •108. Методы прямого обнаружения патогенных микроорганизмов
- •109. Методы косвенной оценки возможного присутствия возбудителей в природных субстратах.
- •110. Санитарно-показательные мо.
- •111. Санитарные требования к устройству и содержанию предприятий пищевой промышленности.
102. Значение фото- и хемосинтеза.
Значение фотосинтеза очень велико, так как, во-первых, растения и другие фотосинтезирующие организмы превращают энергию солнечного света в энергию химических связей органических соединений, которая используется всеми остальными живыми существами планеты; во-вторых, они поставляют в атмосферу кислород, служащий для окисления органических вещества извлечения при помощи этого запасенной в них химический энергии аэробными клетками; в-третьих, некоторые виды растений в содружестве (симбиозе) с азотфиксирующими бактериями переводят атмосферный азот в состав молекул аммиака, его солей и органических азотсодержащих соединений. Солнечную энергию способны непосредственно использовать только клетки зеленых растений, одноклеточных водорослей, зеленых и пурпурных бактерий. За счет этой энергии они синтезируют органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.
Такой биосинтез, который происходит благодаря энергии света, и называют фотосинтезом. Исходными веществами для фотосинтеза служат диоксид углерода атмосферы и вода. Часть синтезируемой при фотосинтезе глюкозы является источником энергии для всех последующих процессов жизнедеятельности растения, в том числе и его роста (развития).
Значение хемосинтеза также велико. Сложные органические вещества для построения своих тел создают не только зеленые растения, но и бактерии, которые не содержат хлорофилла. Этот процесс – хемосинтез – осуществляется благодаря энергии, выделяющейся при химических реакциях окисления различных неорганических соединений: сероводорода, оксида железа и др. Образующаяся при этом энергия запасается в форме аденозинтрифосфорной кислоты. Хемосинтез открыл известный русский микробиолог С.Н. Виноградский в 1887 г.
Примером хемосинтеза может служить окисление сероводорода в водоемах со «стоячей» водой (непроточных). В этих водоемах, содержащих сероводород, живут бесцветные серобактерии. Энергию (Е), которая необходима для синтеза органических соединений из диоксида углерода, они получают в результате окисление сероводорода: свободная сера, выделяющаяся в результате этого, накапливается в клетках бактерий. Если сероводорода впоследствии не хватает, бесцветные серобактерии производят дальнейшее окисление содержащейся в них свободной серы до серной кислоты: образовавшаяся энергия также используется для осуществления синтеза органического вещества из диоксида углерода.
К хемотрофам относятся такие автотрофные организмы, как хемотрофные бактерии: водородные, нитрифицирующие, железобактерии, серобактерии и др.
103. Роль атф в метаболизме мо и ее образование; субстратное фосфолирование и схема Эмбдена-Мейергофа-Париаса.
Для полной характеристики микроорганизмов используют понятие тип метаболизма. Различия в типах метаболизма определенных групп микроорганизмов обусловлены особенностями конструктивного и спецификой энергетического обменов. В зависимости от используемого источника энергии для получения АТФ микроорганизмы делят на фототрофов (используют энергию света) и хемотрофов (используют энергию химических реакций).
Процесс образования АТФ называется фосфорилированием; он осуществляется в митохондриях (у эукариот) и ферментных системах, локализованных на цитоплазмаческой мембране (у прокариот). Механизм образования, АТФ у разных групп микроорганизмов неодинаков. Различают субстратное, окислительное и фотофосфорилирование. Любой тип фосфорилирования обязательно сопряжен с переносом электронов в ходе окислительно-восстановительных реакций энергитического обмена. При этом одни микроорганизмы в качестве доноров электронов (водорода) используют неорганические, другие - органические соединения. Соответственно первые называются литотрофами, вторые - органотрофами.
Субстратное фосфорилирование (биохимическое), синтез богатых энергией фосфорных соединений за счёт энергии окислительно-восстановительных реакций гликолиза (катализируемых фосфоглицеральдегиддегидрогеназой и енолазой) и при окислении a-кетоглутаровой кислоты в трикарбоновых кислот цикле (под действием a-кетоглутаратдегидрогеназы и сукцинаттиокиназы). Для бактерий описаны случаи С. ф. при окислении пировиноградной кислоты. С. ф., в отличие от фосфорилирования в цепи переноса электронов (см. Окислительное фосфорилирование), не ингибируется "разобщающими" ядами (например, динитрофенолом) и не связано с фиксацией ферментов в мембранах митохондрий. Вклад С. ф. в клеточный фонд АТФ в аэробных условиях значительно меньше, чем вклад фосфорилирования в цепи переноса электронов.
Глико́лиз (фосфотриозный путь, или шунт Эмбдена — Мейерхофа, или путь Эмбдена-Мейергофа-Парнаса ) — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ. Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (пирувата), гликолиз в анаэробных условиях ведёт к образованию молочной кислоты (лактата). Гликолиз является основным путём катаболизма глюкозы в организме животных.