
- •Определение средней интенсивности трафика. Единица измерения интенсивности трафика.
- •Измерения трафика. Диаграмма Ганта. Нахождение объема пропущенного трафика. Средняя интенсивность трафика.
- •Нормальная оценка интенсивности трафика.
- •4. Диаграмма Кивиата для телефонной линии.
- •5. Как определяется объем трафика и интенсивность трафика?
- •2) Пусть в течение времени т фиксируются длительности ti всех n занятий выходов некоторого пучка, тогда трафик определяют так:
- •6. Программы для мониторинга сетей. Функции и возможности.
- •7. Основные понятия модели потоков событий ( стационарность, последействие, ординарность, интенсивность потока, параметр потока).
- •8 Что такое пуассоновский поток? Перечислите его свойства, параметры.
- •9 Определение примитивного потока
- •20 Примеры самоподобных процессов.
- •21. Основные принципы моделирования потока событий.
- •23. Распределение Вейбулла: математическое ожидание, дисперсия, абсолютные моменты, центральные моменты.
- •24. Самоподобные (фрактальные) модели трафика.
- •25. Поток Эрланга первого, второго и третьего порядка.
- •26. Примеры простейших самоподобных процессов.
- •27. Понятие фрактала. Основное свойство фракталов. Виды фракталов.
- •28. Нормированное фрактальное броуновское движение с параметром Херста.
- •29. Фрактальный гауссовский шум.
- •30. Генерирование потока событий с равномерным распределением интервала между событиями.
- •31. Генерирование потока событий, распределенных по закону, отличному от равномерного.
- •32. Модели потоков событий. Метод удачного случайного приращения.
- •33. Модели потоков событий. Метод случайного смещения промежуточных точек
- •34. Модели систем массового обслуживания.
- •35. Задачи анализа и проектирования телекоммуникационных сетей и систем
- •36. Понятие масштабной модели, её назначение и возможности. Анализ недостатков данной модели
- •37. Физическая модель сети типа прототип, её назначение и возможности. Анализ недостатков данной сети.
- •41. Формула Литла для определения среднего числа заявок в системе.
- •45. Смо с полнодоступными и неполнодоступными серверами.
- •47. Анализ механизма приоритетного обслуживания (в лекциях тема 7).
- •46. Анализ работы смо без приоритетов.
- •48. Виды различных дисциплин обслуживания требований.
- •49. Определение среднего времени ожидания в очереди для меченного требования
- •50. Определение консервативной смо. Формула для определения взвешенной суммы времени ожидания в очереди
- •51. Имитационные модели смо, основные задачи построения программы имитации
- •52. Условия, накладываемые на быстродействие алгоритмов имитации
- •68. Непрерывные цепи Маркова.
- •69.Анализ системы «гибели-размножения». Графическая интерпретация процессов переходов в непрерывной цепи Маркова.
- •70. Диаграмма интенсивностей переходов для непрерывной цепи Маркова.
- •71.Уравнения равновесия или баланса.
- •72. Анализ системы массового обслуживания типа m/m/1, диаграмма интенсивностей переходов в этой системе.
- •73 Стационарное распределение вероятностей состояний в системе m/m/1, зависимость среднего времени пребывания в системе в зависимости от коэффициента использования (нагрузки).
- •75. Сравнение характеристик качества обслуживания двухсерверной системы с односерверной.
- •81. Анализ характеристик качества обслуживания системы.
- •85.Модель Энгсета. Схема m-серверной системы с полными потерями
- •86. Диаграмма интенсивностей переходов для m-серверной системы с полными потерями, соответствующей модели Энгсета
- •90 Система с самоподобным входным потоком и детерминированным временем обслуживания
- •91 Расчет основных характеристик системы с самоподобным входным потоком и детерминированным временем обслуживания.
- •92 Анализ телекоммуникационных систем.
- •93. Расчет необходимого числа соединительных линий.
- •95. Анализ сетей массового обслуживания.
- •96 Марковские сети без потерь
- •97 Пример замкнутой сети с тремя узлами. Диаграмма переходов для этой сети.
- •98 Сети с блокировками (потерями). Метод Ли.
- •99. Сравнительный анализ расчетов соединительных линий
- •100 Анализ многозвеньевых коммутационных схем
97 Пример замкнутой сети с тремя узлами. Диаграмма переходов для этой сети.
Определим систему уравнений локального равновесия как систему, в которой приравнивается интенсивность потока из данного состояния сети за счет ухода заявок из узла i к интенсивности потока в данное состояние сети за счет поступления требований в узел i .
Покажем это на примере:
Рис. 1.29 Замкнутая сеть с тремя узлами.
Пусть в замкнутой сети с тремя (N=3) узлами циркулирует ровно два требования (K=2).
Состояние сети описывается тройками:
.
Всего в сети возможно различных состояний
.
На рис. 1.30 показана диаграмма интенсивностей переходов между этими состояниями.
Рис. 1.30 Диаграмма интенсивностей переходов для замкнутой сети с тремя узлами.
Если записать систему уравнений глобального равновесия, то она будет состоять из шести уравнений, одно из которых обычно избыточно из-за существования условия нормировки.
В каждом из этих уравнений левая сторона соответствует потоку исходящему из данного состояния, а правая – потоку, входящему в это состояние.
С точки зрения локального равновесия первые три уравнения именно такими и являются. В остальных уравнениях видно, что первое слагаемое правой части уравновешивается первым слагаемым левой части. И также для вторых слагаемых.
Следовательно, уравнения локального равновесия могут быть выписаны так
Первое из этих уравнений описывает локальный баланс для узла 1, а второе – для узла 2. Вместе всего образуется девять уравнений локального равновесия, из которых четыре – избыточны. Решение дается следующими формулами
Как видно, решение уравнений локального равновесия отыскать значительно проще. В любом случае поиск стационарных вероятностей сводится к решению больших систем линейных уравнений. Заметим еще раз, что рассмотренные сети массового обслуживания удовлетворяли требованиям эргодической марковской цепи.
98 Сети с блокировками (потерями). Метод Ли.
Марковский подход к анализу сетей массового обслуживания позволяет рассчитать вероятности состояний для сетей, состоящих из узлов, каждый из которых есть СМО типа M/M/m. При этом предполагается, что каждый узел содержит бесконечный накопитель, и все заявки будут обслужены через некоторое время. Другой постановкой задачи является анализ сети с узлами, в которых может быть СМО с блокировкой заявок. Часто такими СМО выступают коммутационные схемы, имеющие конечные пучки соединительных линий. Другой моделью являются сети с множественным доступом к фиксированному числу каналов. Рассмотрим в качестве примера (рис.1.31) подключение сельского абонента С через абонентскую линию с блокиратором к сельской АТС в пункте В, которая в свою очередь имеет два канала связи с АТС в пункте А. Требуется определить вероятность блокировки звонка абоненту С из пункта А. Поставим в соответствие рассматриваемой сети так называемый вероятностный граф (граф Ли), с вершинами А, В и С и ребрами a,b,c соответствующими потокам заявок. Будем называть их далее звеньями, и параметризовать значениями некоторых вероятностей их занятия.
Рис. 1.31 Подключение абонента С с абонентом А через АТС в пункте В.
Метод Ли состоит в том, что вероятность блокировки пути между любыми вершинами графа может быть рассчитана как вероятность совместного занятия всех соединяющих эти вершины звеньев в предположении, что вероятности занятия каждого из звеньев независимы.
Вероятность совместного занятия может быть рассчитана с помощью известных теорем теории вероятностей для сложных событий.
Обозначим вероятности занятия звеньев
a,b,c соответственно
.
Вероятности того, что звено свободно можно найти как
.
Вероятность блокировки пути АВ
будет определяться как совместная
вероятность занятости a и b:
.
Вероятность свободности этого пути:
.
Общая вероятность свободности пути АС будет
.
Тогда вероятность блокировки пути АС будет
.
Граф, рассмотренный здесь, относится к классу параллельно-последовательных. Для расчета вероятностей таких графов в общем случае применяются простые правила, сведенные ниже в таблицу:
Вероятность занятости (блокировки) |
wi=1-qi |
Вероятность свободности (неблокированности) |
qi=1-wi |
Параллельное включение звеньев |
w=w1w2w i…wn |
Последовательное включение звеньев |
q=q1q2qi…qn |
Бывают случаи, когда граф сети не сводится к параллельно-последовательным схемам. Например, мостиковый граф (рис. 1.32)
Рис. 1.32 Мостиковый граф.
Для такого графа можно получить вероятность блокировки пути АВ в виде
.
Графы типа приведенных выше часто встречаются при анализе многозвенных коммутационных схем. Там они имеют более сложный вид, например как на рис. 1.33 и 1.34.
Рис. 1.33 Пример параллельно – последовательного графа.
Рис. 1.34 Пример параллельно – последовательного графа.
Для этих графов можно получить явные выражения для вероятности блокировки пути АВ
В том случае, если граф получается слишком сложным, можно пользоваться методом оценочных графов. Строится граф оценки сверху путем разделения вершин и отбрасывания ребер для упрощения расчета и граф оценки снизу путем объединения части вершин. Рассчитываются вероятности блокировки для оценочных графов, которые и будут служить соответственно верхней и нижней границей, между которыми и будет лежать значение вероятности блокировки для исходного графа.