Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРА БАЛАНДА.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
458.12 Кб
Скачать

24. Матожидание и дисперсия бин. И пуас. Распр. С.В.

Биномиальным называют закон распределения дискретной случайной величины X - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события постоянна.

Для биномиального распределения: математическое ожидание M(X) = np, дисперсия D(X) = npq, мода np-q ≤ Mo ≤ np+p, коэффициент асимметрии As = (q - p)/√npq, коэффициент эксцесса Ex = (1 - 6pq)/npq

Пуассоновское распределение.

Математическое ожидание непрерывной случайной величины вычисляется по формуле:

В частности, если с.в. задана своей плотностью вероятности на каком-либо отрезке, то и интеграл вычисляем на этом отрезке.

Дисперсия

Среднее квадратическое отклонение σ(X) = √D(X)

Мода - значение с.в., имеющее наибольшую вероятность. Если в задаче требуется определить моду - находим экстремум (максимум) плотности вероятности f(x).

Коэффициент вариации непрерывной случайной величины вычисляется по той же формуле, что и для дискретной с.в.: V(X) = |σ(X)/M(X)| · 100%

Асимметрия (коэффициент асимметрии) случайной величины As(X) - величина, характеризующая степень асимметрии распределения относительно математического ожидания. Коэффициент асимметрии непрерывной случайной величины вычисляется по формуле:

Если коэффициент асимметрии отрицателен, то либо большая часть значений случайной величины, либо мода находятся левее математического ожидания, и наоборот, если As(X)>0, то правее.

Эксцесс (коэффициент эксцесса) случайной величины Ex(X) - величина, характеризующая степень островершинности или плосковершинности распределения. Коэффициент эксцесса непрерывной случайной величины вычисляется по формуле:

25. Выборка. Эпририч.Функция распр. Гистограмма, полигон

Выборкой объема n из распределения случайной величины Х называется последовательность x1, x2, …, xn независимых и одинаково распределенных – по тому же закону, что и Х – случайных величин.      Часто в практических ситуациях возникает следующая задача: имеется выборка и отсутствует всякая информация о виде функции распределения F(x). Требуется построить оценку (приближение) для этой неизвестной функции F(x).      Наиболее предпочтительной оценкой функции F(x) является эмпирическая функция распределения Fn(x), которая определяется следующим образом      , где nx – число вариант меньших х (х принадлежит R), n – объем выборки.      Функция Fn(x) служит хорошим приближением для неизвестной функции распределения для больших n.

Определение. Полигоном частот называют ломаную, отрезки которой соединяют точки (x1, n1), (x2, n2), …, (xk, nk).

Для построения полигона частот на оси абсцисс откладывают варианты xi, а на оси ординат – соответствующие им частоты ni. Точки (xi, ni) соединяют отрезками прямых и получают полигон частот.

Определение. Полигоном относительных частот называют ломаную, отрезки которой соединяют точки (x1, w1), (x2, w2), …, (xk, wk).

Для построения полигона частот на оси абсцисс откладывают варианты xi, а на оси ординат wi. Точки (xi, wi) соединяют отрезками прямых и получают полигон относительных частот.

На рисунке изображен полигон относительных частот следующего распределения:

???

???

???

???

???

???

???

???

???

Рис. 6. Полигон относительных частот.

В случае непрерывного признака целесообразно строить гистограмму, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длинной h и находят для каждого частичного интервала ni – сумму частот вариант, попавших в i-ый интервал.

Определение. Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению (плотность частоты).

Рис. 7. Гистограмма частот.

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс, на расстоянии .

Площадь i-го частичного прямоугольника равна = ─ сумме частот вариант i-го интервала; следовательно, площадь гистограммы частот равна сумме всех частот, то есть объему выборки n.

На рисунке 2 изображена гистограмма частот распределения объема n=100, приведенного в таблице 1. ??????????

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]