Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vm.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
3.63 Mб
Скачать

4. Вычисление объёмов тел

С помощью определенного интеграла можно вычислять и объёмы тел. Дадим соответствующие формулы.

Теорема 6. Пусть тело заключено между плоскостями и а площадь его поперечного сечения плоскостью Если функция непрерывна на отрезке то объём тела вычисляется по формуле

Замечание 3. Если тело получено вращением криволинейной трапеции

вокруг оси , то объём этого тела вычисляется по формуле

Действительно, в этом случае поперечное сечение является кругом радиуса поэтому Аналогично вычисляется объём тела, полученного вращением вокруг оси криволинейной трапеции (конечно, в выписанных формулах для предполагается, что функции и непрерывны на соответствующих отрезках).

Билет 16 1. Векторы. Координаты векторов и линейные операции над векторами

Множество всех геометрических векторов в трехмерном пространстве обозначают буквой а множество всех векторов на плоскости – буквой Ниже все понятия и утверждения формулируютя для пространства Ясно, что они очевидном образом переносятся и на пространство Перейдем к изложению основных понятий.

Определение 1. Вектором называется направленный отрезок с начальной точкой и конечной точкой причем два вектора считаются р̀авными, если один из них получен из другого параллельным переносом(см. Р1). Длина направленного отрезка называется длиной вектора . Векторы и лежащие на одной прямой или на параллельных прямых называются коллинеарными; если при этом их направления совпадают, то пишут а если они имеют противоположные направления, то пишут Таким образом, Если начало и конец вектора совпадают, то такой вектор называется нулевым (обозначение: ). Считают, что нулевой вектор коллинеарен любому другому вектору и имеет произвольное направление.

Заметим, что векторы обозначаются также малыми латинскими буквами:

Определим теперь линейные операции над геометрическими векторами. Выпустим векторы и из общего начала и построим параллелограмм со сторонами и . Пусть диагональ этого параллелограмма.

1. Суммой двух векторов и называется вектор совпадающий с диагональю параллелограмма , построенного указанным образом на векторах и (см.Р3).

2. Разностью векторов и называется такой вектор что Обозначение:

Если векторы и имеют общее начало, то вектор будет совпадать с вектором, выпущенным из конца вектора в конец вектора (см.Р4).

3. Произведением вектора на число называется вектор имеющий длину и направленный так же, как и если и противоположно вектору если

Обозначение: Если же то

2. Скалярное, векторное и смешанное произведение векторов

Дадим определения этих произведений в краткой форме.

а) Скалярное произведение векторов и

б) Векторное произведение векторов и

- есть вектор удовлетворяющий требованиям:

1) 2) 3)тройка правая, т.е. кратчайший поворот от вектора к вектору имеющих общее начало, виден из конца вектора (с тем же началом) совершающимся против часовой стрелки.

в) Смешанное произведение векторов

Геометрический смысл: а) модуль векторного произведения численно равен площади параллелограмма, построенного на векторах и ; б) модуль смешанного произведения равен объёму параллелепипеда, построенного на векторах , и .

Если начало вектора а конец вектора то =

Орты осей декартовой системы координат имеют следующие координаты:

векторы и коллинеарны тогда и толко тогда, когда существует число такое, что

Проекция вектора на вектор вычисляется по формуле

Векторы коллинеарны тогда и только тогда, когда их координаты пропорциональны:

Скалярное произведение векторов и равно нулю когда векторы и ортогональны друг другу.

Векторное произведение равно нулю когда векторы и коллинеарны.

Смешанное произведение равно нулю когда векторы , и компланарны (т.е. все они либо лежат в одной плоскости, либо находятся в параллельных плоскостях).

Билет 17 1. Общее уравнение плоскости и уравнение в отрезках

П усть в пространстве задана плоскость и пусть фиксированная точка, а произвольная (текущая) точка этой плоскости. Посмотрим, какому уравнению будет подчинена произвольная точка плоскости Пусть вектор нормали к плоскости Так как то скалярное произведение

Мы получили

уравнение плоскости, проходящей через фиксированную точку с вектором нормали (1)

Раскроем в (1) скобки и обозначим Получим

общее уравнение плоскости: Имеет место следующее очевидное утверждение.

Теорема 1. Любое линейное уравнение (2) задаёт в пространстве плоскость с вектором нормали И обратно: любая плоскость в описывается линейным уравнением (2).

Если числа не равны нулю, то уравнение называют “уравнением плоскости в отрезках” (впредь кавычки будем опускать). При этом являются величинами (с учётом знака) отрезков, отсекаемых плоскостью от осей соответст-венно. Эта плоскость проходит через точки факт, удобный при изображении этой плоскости в пространстве. Из общего уравнения (2) плоскости легко получить ее уравнение в отрезках: (если, конечно, числа, записанные в знаменателях, существуют).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]