
- •1. Классификация и область применения ск
- •2. Центрально-сжатые сплошные колонны. Расчет и
- •1 Достоинства и недостатки мк. Сопоставление конструкций из стали и жб
- •2. Конструкции баз центрально-сжатых колонн. Алгоритм расчета их элемента.
- •1. Какие свойства должны быть гарантированны в сталях. Применение в строительстве и почему?
- •2. Алгоритм расчета составных балок, отличие от расчета прокатных балок
- •1. Работа стали при одноосном растяжении, виды разрушения стали. Различие в работе на статические нагрузки у сталей разной прочности. Какие прочностные характеристики используются при расчете.
- •2. Алгоритм расчета прокатных балок.
- •2. Проверка общей устойчивости балок и местной устойчивости их элементов конструкций. Меры по их обеспечению.
- •1. Изменение сечения балок по длине, конструктивное
- •2. Работа стали при неравномерном распределении напряжений. Концентрация напряжений.
- •1. Хрупкое разрушение стати. Факторы, влияющие на появление хрупкости
- •2. Проверка прочности балок
- •1. Сортамент. Виды профилей используемых в стр-ве.
- •2. Проектирование оголовков колон при опирании балок сверху. Варианты решения оголовков колонн.
- •1. Расчет металлоконструкций по предельным состояниям
- •2. Стыки прокатных балок. Конструктивные решения и расчет.
- •1 Виды сварных соединений и швов
- •2. Проверка жесткости элементов балок Влияние изотермических характеристик сечения балок на их жесткость
- •I. Работа и расчет сварных соединений с угловыми швами Конструктивные требования
- •2 Общая характеристика ферм, их классификация,
- •1. Комбинированные сварные соединения
- •2. Типы сечений стержней фермы, их сравнительная характеристика.
- •1. Конструктивные требования, предъявляемые к сварным швам.
- •2. Обеспечение устойчивости центрально сжатых колонн
- •2 . Составные балки. Расчет и конструирование Алгоритм расчета составных балок, отличие от расчета прокатных балок
- •1.Балочные клетки, их компоновка, распределение нагрузок между элементами Передача нагрузок на поддерживающих конструкциях
- •2. Подбор сечения сжатых элементов ферм
- •1. Расчет стального настила.
- •2. Расчет растянутых элементов ферм
- •1. Конструктивные требования, предъявляемые к болтовым соединениям.
- •2. Соединения поясов со стенкой в составных балках двух сечений, учет усилий от локальных нагрузок
- •6)В зависимости от условий работы материала
- •2. Центрально-сжатые сплошные колонны. Расчет и
- •1. Классификация и область применения ск.
- •2. Алгоритм расчета балок.
- •1. Проектирование и расчет угловых сварных соединений.
- •2. Проектирование узлов ферм из спаренных уголков.
- •2. Расчет и конструирование балок.
- •1. Сортамент
- •2. Базы колонн, расчет и конструирование
2. Алгоритм расчета прокатных балок.
В качестве прокатных балок применяются двутавры с уклоном внутренней грани полок, с уклоном параллельных граней полок. Их № подбираются в соответствии с ГОСТ и только тогда, когда мы не можем подобрать прокатный двутавр, а это имеет место при большой нагрузке мы используем сварной двутавр.
1) исходные данные
2) статический расчет. Суть этого блока состоит в выборе расчетной схемы балки и ее статического расчета.
3) конструктивный расчет. Прокатную балку рассчитываем по двум предельным состояниям. По первому предельному состоянию мы должны обеспечить несущую способность балки (прочность, общую устойчивость, местную устойчивость элементов). По второму предельному состоянию мы должны обеспечить пригодность балки к ее нормальной эксплуатации, при этом прогиб балки не должен превышать предельной.
Мы должны гарантировать не наступление первого и второго предельного состояния.
Сечение балки подбираем из условия ее прочности при расчете в пределах упругих деформаций: σ=Mmax/W < Ry*yc.
При благоприятных факторах можно уменьшить размеры сечения за счет развития пластических деформаций: Wreq = Mmax/Ry*yc. Далее по сортаменту принимаем двутавр, момент сопротивления которого равен или больше требуемого, в противном случае условие прочности выполняться не будет.
Проверка несущей способности балки подобранного профиля: проверки на прочность балки, изгибаемой в одной из главных плоскостей при расчете в пределах упругих деформаций в сечение где M=Mmax и Q = 0
σ= Mmax/Wфакт<Ry∙γc, Q=Qmax и M = 0
τ= Qmax∙sx/(Iх∙tw)<Ry∙γc
При одновременном действии в сечение момента и перерезывающей силы, напряжение приведенное проверяется по формуле:
σef=√σx2+3τxy2 <1.15Ry∙γc
. Проверяются они в уровне сопряжения пояса со стенкой.
Помимо обеспечения прочности балки мы должны обеспечить ее общую устойчивость. Суть явления потери балкой общей устойчивости состоит в следующем: предельное состояние изгибаемого элемента может наступить до того, как балка исчерпает свою прочность, т.е. общей потери устойчивости. Вначале балка изгибается в своей плоскости, совпадающей с плоскостью действия внешней нагрузки, после того, как напряжение в балке достигает критических, она закручивается и выходит из плоскости изгиба, затем, в поясах балках появляются пластически деформации и она теряет несущую способность. M/φb*Wc < Ry*yc. Где φb -коэффициент снижения расчетного сопротивления при потере общей устойчивости балки, Wc - момент сопротивления сечения балки относительно крайнего сжатого волокна.
Пункт 5.16* говорит о том, когда проверку общей устойчивости по этой формуле можно не производить. Последняя проверка несущей способности - это проверка местной устойчивости элементов (только тех, где есть сжимающие напряжения). Но в прокатных балках местная устойчивость элементов не проверяется, т.к. она обеспечивается соотношением их размеров, назначенных с учетом устойчивой работы, при различных напряженных состояниях.
Второе предельное состояние балки обеспечивает ее нормальную эксплуатацию, подсчитывается прогиб балки и сравнивается с предельным. Подсчет ведется по нормативным нагрузкам
Билет №6
1. Влияние различных факторов на свойства сталей. Повышение упругой работы материала в результате предшествующей пластической деформации - наклеп При наклепе искажается атомная решетка, она закрепляется в новом деформированном состоянии. В состоянии наклепа сталь становится более жесткой, пластичность стали снижается, повышается опасность хрупкого разрушения. Наклеп возникает в результате изготовления конструкций при холодной гибке элементов, пробивке отверстий, резке ножницами. Старение - изменение свойств низкоуглеродистой стали без заметного изменения ее микроструктуры. Старение снижает пластичной листовой стали, немного повышает прочность, но снижает сопротивление хрупкому разрушению и порог хладноломкости. Различают термическое и деформационное старение
Термическое вызвано понижением растворимости углерода и азота в малоуглеродистых сталях резко охлажденных после прокатки, сварки до комнатной температуры. Деформационное старение происходит в сталях, подвергающихся холодной деформации (холодная гибка, правка).
Чтобы уменьшить склонность стали к старению, при выплавке применяют дегазацию и модифицирование алюминием, титаном и ванадием. Для ряда сталей предусмотрены специальные испытания на определение склонности к старению. Влияние температуры
При температуре 250…300 градусов прочность стали несколько повышается, пластичность снижается. Сталь в изломе становится более хрупкой, имеет крупнозернистое строение. Не следует при этой температуре деформировать сталь или подвергать ее ударным воздействиям.
Нагрев выше 400 градусов приводит к резкому падению предела текучести и временного сопротивления, а при температуре 600…650 градусов наступает температурная пластичность и сталь теряет свою несущую способность. При отрицательных температурах прочность стали возрастает, ударная вязкость падает и сталь становится более хрупкой.
Температуру при которой ударная вязкость снижается до предельного значения принимают за порог хладноломкости или критическую температуру перехода стали в хрупкое состояние Тcr. Данные о критических температурах хрупкости позволяют установить температурный интервал, при котором рекомендуется использовать в конструкциях ту или иную сталь. Среда, виды коррозии:
Агрессивность среды во многих случаях предопределяет выбор материала и конструктивной формы, оптимальный вид защитных покрытий и правила эксплуатации конструкции. Показатели среды: относительная влажность, температура, возможность образования конденсата, состав и концентрация газов и пыли, туманы агрессивных жидкостей.
Главный фактор, определяющий интенсивность коррозионного разрушения - относительная влажность. Четыре степени агрессивности воздействия среды: 1-неагрессивная, 2 - слабоагрессивная, 3 -среднеагрессивная, 4 – сильноагресенвная. Нормами также установлены группы A,B,C,D в зависимости от вида и концентрации загрязненности воздуха агрессивными реагентами, солями. Коррозия - разрушение поверхности металла вследствие химического, электрохимического и биохимического воздействия окружающей среды. Строительные стальные конструкции подвержены главным образом электрохимической, атмосферной коррозии, которая определяется электрохимическими процессами на поверхности стали в присутствии влаги.