- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 4
- •Вопрос 5
- •Вопрос 6
- •Вопрос 7
- •Вопрос 8
- •Вопрос 9
- •Вопрос 10
- •Вопрос 11
- •Вопрос 20
- •Вопрос 23
- •Вопрос 22
- •Вопрос 24
- •Вопрос 26
- •Вопрос 27
- •Вопрос 28
- •Вопрос 29
- •Вопрос 30 Закон полного тока для магнитной цепи с постоянной магнитодвижущей силой
- •Вопрос 31 Катушка с магнитопроводом в цепи переменного тока
- •Вопрос 32 Магнитные усилители и их характеристики
- •Вопрос 33
- •Вопрос 38
- •X, y, z (c4, c5, c6) – их концы.
- •Вопрос 40. Автотрансформаторы, так же как и трансформаторы, служат для преобразования напряжения при передачи электроэнергии.Они могут быть как понижающими, так и повышающими.
- •Вопрос 41. Устройство ам
- •Вопрос 42. Режим холостого хода асинхронного двигателя.
- •Вопрос 43. Нагрузочный режим
- •Вопрос 44.Уравнение магнитодвижущих сил (мдс) и токов ам.
- •Вопрос 45. Вращающий момент в ad создается в результате взаимодействия вращающего поля, ф и тока в роторе i2.
- •Вопрос 46.
- •Вопрос 48
- •Вопрос 49
- •Вопрос 50
- •Вопрос 51. Механические характеристики синхронного электродвигателя
- •Вопрос 52
- •Вопрос 53. Синхронные компенсаторы.
- •Вопрос 54
- •Вопрос56. Электродвижущая сила и электромагнитный момент машин постоянного тока.
- •Вопрос 58, Свойства двигателей, как и генераторов, определяются способом возбуждения.
- •Вопрос 59Пуск двигателей постоянного тока
Вопрос 42. Режим холостого хода асинхронного двигателя.
Под режимом холостого хода (ХХ) АД подразумевают такое его состояние, при котором к статору подведено номинальное напряжение, а ток в роторе равен нулю (обмотка ротора разомкнута и нагрузка на валу отсутствует).
Отношение ЭДС обмоток статора и ротора называют коэффициентом приведения АД по ЭДС.(коф. трансформации по напряжению-см.»Схема замещение АД»,Касаткин Немцов стр.352).
(6.10)
Коэффициент
приведения
отличается
от коэффициента трансформации
трансформатора наличием в отношении
(6.10) обмоточных коэффициентов
и
статора и ротора, учитывающих наличие
сдвига фаз между ЭДС витков катушек
обмоток .
Ток обмотки статора Io=Iао+Ipo, как и в трансформаторе, называется током холостого хода .
Его активная составляющая значительно меньше реактивной составляющей (Iао<Ipo).
Поэтому Io~Ipo, т.е. ток ХХ является намагничивающим, создающим вращающий магнитный поток.
По сравнению с намагничивающим током трансформатора той же мощности у двигателей он больше (достигает 20-25% от номинального тока). Это объясняется наличием воздушного зазора между статором и ротором машины, обусловливающего значительное возрастание магнитного сопротивление машины.
При замкнутой обмотке ротора без дополнительной механической нагрузки на валу (При холостом вращении) частота вращения ротора будет близкой к частоте вращения поля статора.
В отличие от трансформатора при холостом вращении двигателя в последнем, кроме электрических и магнитных потерь, возникают механические потери.
Вопрос 43. Нагрузочный режим
В случае холостого хода двигателя его механическая нагрузка обусловлена лишь силами трения в подшипниках и вентиляционными потерями (аэродинамикой вращающихся частотой).
При появлении на валу ротора дополнительной механической нагрузки ротор затормозится, увеличится скольжение и, следовательно, возрастут ЭДС и ток ротора .
Увеличение тока в роторе приведет к возрастанию его магнитодвижущей силы F2,которая по закону Ленца вызовет ослабление магнитного потока Фо, созданного МДС холостого хода Fo.
Ослабление потока приведет к уменьшению Е1 и нарушению электрического равновесия между напряжением и ЭДС в цепи статора. Вследствие этого возрастает ток I1, который увеличит поток статора и тем самым скомпенсирует размагничивающие действие тока ротора I2 .
В результате описанных выше переходных электромагнитных процессов установится общий магнитный поток Фо, равный потоку при ХХ двигателя, обусловленный разностью МДС статора и ротора.
Таким образом, величина результирующего магнитного потока, зависящая только от напряжение сети, в пределах до номинальной нагрузки останется почти без изменения. Поэтому:Ф1-Ф2=Фо, (6.11) где Ф1, Ф2, Фо – соответственно магнитные потоки статора , ротора и холостого хода.
Увеличение тока I1 в статоре вызовет увеличение мощности, передаваемой двигателю из сети, в результате чего возрастает вращающий момент и динамическое равновесие восстановится.
Свойства саморегулирования вращающего момента в соответствии с моментом нагрузки на валу АД.
АД, так же как и все остальные электрические машины, обладают свойством саморегулирования. Оно заключается в том, что при изменении противодействующего момента нагрузки автоматически изменяется вращающий момент машины и восстанавливается нарушенное равновесие моментов на валу.
Как известно
– установившийся режим с постоянной
скоростью возможен только при равенстве
моментов на валу – электромагнитного
вращающего М и противодействующего
момента Мпр (Суммарного момента
нагрузки и сил трения). Если внезапно
увеличится противодействующий момент,
то ротор начнет тормозиться. Скорость
ротора n2
будет падать, а скорость его скольжения
относительно вращающего поля
- возрастать. При увеличении скорость
скольжения неизбежно увеличатся ЭДС
Е2 и токи I2 в
проводниках ротора.
В свою очередь, ток ротора определяет электромагнитные силы и момент, действующие на ротор. С ростом вращающего момента отрицательное ускорение ротора будет стремиться к нулю, пока не наступит повторное равновесие моментов: скорость ротора установится на новом, более низком уровне.
Описанный переходной процесс можно характеризовать следующий математической (мнемонической) схемой:
;
Понимание свойства саморегулирования – ключ к пониманию всех характеристик АМ.
