- •Определение
- •[Править]Диссоциация электролитов с многовалентными ионами
- •[Править]Связь константы диссоциации и степени диссоциации
- •[Править]Отличие экспериментальных результатов от модели Аррениуса, вывод константы диссоциации через активности
- •[Править]Константа диссоциации сильных электролитов
- •[Править]Примеры расчётов [править]Диссоциация воды
- •[Править]Диссоциация слабой кислоты
[Править]Константа диссоциации сильных электролитов
Сильные электролиты диссоциируют практически нацело (реакция необратимая), поэтому в знаменателе выражения для константы диссоциации стоит ноль, и всё выражение стремится к бесконечности. Таким образом, для сильных электролитов термин «константа диссоциации» лишён смысла.
[Править]Примеры расчётов [править]Диссоциация воды
Вода представляет собой слабый электролит, диссоциирующий в соответствии с уравнением
Константа диссоциации воды при 25 °C составляет
Считая, что в большинстве растворов вода находится в молекулярном виде (концентрация ионов H+ и OH− мала), и учитывая, что молярная масса воды составляет 18,0153 г/моль, а плотность при температуре 25 °C — 997,07 г/л, чистой воде соответствует концентрация [H2O] = 55,346 моль/л. Поэтому предыдущее уравнение можно переписать в виде
Эта величина называется ионным произведением воды. Так как для чистой воды [H+] = [OH−], можно записать
Водородный показатель воды, таким образом, равен
[Править]Диссоциация слабой кислоты
Найдём pH и степень диссоциации 0,01M раствора плавиковой кислоты HF. Её константа диссоциации равна
Обозначим степень диссоциации через α. Тогда [H+] = [F−] = Cα, [HF] = C(1-α). Подставив эти выражения в формулу для константы диссоциации, получим
Откуда следует квадратное уравнение относительно α:
Решая его по стандартной формуле, получим
Применение приближённой формулы даёт ошибку около 15 %:
Исходя из найденного значения степени диссоциации, найдём pH раствора:
Закон разбавления Оствальда — соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора:
Здесь К — константа диссоциации электролита, с — концентрация, λ и λ∞ — значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении. Соотношение является следствием закона действующих масс и равенства
где α — степень диссоциации.
Закон разбавления Оствальда выведен В.Оствальдом в 1888 и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.
Сильные электролиты при растворении в воде практически полностью диссоциируют на ионы независимо от их концентрации в растворе.
Поэтому в уравнениях диссоциации сильных электролитов ставят знак равенства (=).
К сильным электролитам относятся:
- растворимые соли;
- многие неорганические кислоты: HNO3, H2SO4, HCl, HBr, HI;
- основания, образованные щелочными металлами (LiOH, NaOH, KOH и т.д.) и щелочно-земельными металлами (Ca(OH)2, Sr(OH)2, Ba(OH)2).
Слабые электролиты в водных растворах лишь частично (обратимо) диссоциируют на ионы.
Поэтому в уравнениях диссоциации слабых электролитов ставят знак обратимости (⇄).
К слабым электролитам относятся:
- почти все органические кислоты и вода;
- некоторые неорганические кислоты: H2S, H3PO4, H2CO3, HNO2, H2SiO3 и др.;
- нерастворимые гидроксиды металлов: Mg(OH)2, Fe(OH)2, Zn(OH)2 и др.
Сольвата́ция (от лат. solvo — растворяю) — электростатическое взаимодействие между частицами (ионами, молекулами) растворенного вещества и растворителя. Сольватация в водных растворах называется гидратацией. Образующиеся в результате сольватации молекулярные агрегаты называются сольватами (в случае воды гидратами). В отличие от сольволиза объединение однородных частиц в растворе называют ассоциацией.
Представление о сольватации ионов было введено одновременно и независимо И. А. Каблуковым и В. А. Кистяковским в 1889—1891[1].
Сольватация состоит в том, что молекула растворенного вещества оказывается окруженной сольватной оболочкой, состоящей из более или менее тесно связанных с ней молекул растворителя. В результате сольватации образуются сольваты-молекулы образования постоянного или переменного состава. Время жизни сольватов определяется характером и интенсивностью межмолекулярных взаимодействий; даже в случае сильного взаимодействия время жизни отдельного сольвата мало из-за непрерывного обмена частицами в сольватной оболочке. В соответствии с типами межмолекулярного взаимодействия выделяют неспецифическую и специфическую сольватацию. Неспецифическая сольватация обусловлена ван-дер-ваальсовыми взаимодействиями, специфическая сольватация проявляется главным образом вследствие электростатических взаимодействий, координационных и водородных связей.
Сольватация приводит к тому, что тип растворителя изменяет скорость химических реакций (до 109 раз), определяет относительную устойчивость таутомеров, конформеров, изомеров, влияет на механизм реакций. Положения кислотно-основных равновесий в значительной степени определяются сольватирующей способностью растворителя. Подробнее о влиянии сольватации на физ.-хим, характеристики растворенных в-в и их реакц. способность см. в ст. Реакции в растворах.
На влиянии сольватации на характеристики электронных спектров поглощения и испускания основано явление, наз. сольватохромией.
Ионные реакции — реакции между ионами в растворе. Например, реакцию
AgNO3 + NaCl = NaNO3 + AgCl
можно представить в ионном виде (реакция расписывается на ионы, не расписываются осадки, газы, вода, слабые кислоты и основания, а также малорастворимые и нерастворимые соединения) например AgCl нерастворим в воде и на ионы не расписывается:
Ag+ + NO3− + Na+ + Cl− = AgCl + Na+ + NO3−
Одинаковые ионы сокращаются и получается сокращенное ионное уравнение. Так как взаимодействие произошло между ионами Ag+ и ионами Cl−, то выражение
Ag+ + Cl− = AgCl
и есть ионное уравнение рассматриваемой реакции. Оно проще молекулярного и в то же время отражает сущность происходящей реакции.
[править]Ионные реакции в органической химии
Органические катионы и анионы — неустойчивые промежуточные частицы. В отличие от неорганических ионов, постоянно присутствующих в водных растворах и расплавах, они возникают только в момент реакции и сразу же вступают в дальнейшие превращения.
Условия реакций органических веществ имеющих ионную природу:
невысокая температура;
полярные растворители, способные к сольватации образующихся ионов.
По характеру реагента, действующего на молекулу, ионные реакции делятся на электрофильные и нуклеофильные. Действие света или радиоактивного излучения не влияет на скорость реакций органических веществ имеющих ионную природу.
