- •1. Органолептический анализ. Классификация его видов.
- •2. Основы визуального органолептического анализа.
- •3. Основы обонятельного анализа.
- •4. Основы вкусового анализа.
- •5. Основы осязательного анализа.
- •6. Подбор дегустаторов. Требования, предъявляемые к ним.
- •10. Метод предпочтения.
- •11. Методы сравнения
- •12 Методы балльной оценки.
- •13.Классификация оптических методов. Их характеристики.
- •14.Физические основы рефрактометрии.
- •15. Определение строения вещества с помощью коэффициента преломления.
- •16.Принцип действия рефрактометров.
- •17.Схема прохождения света в рефрактометре Аббе.
- •18. Схема рефрактометра ран. Принцип работы.
- •19.Практическое применение рефрактометров.
- •20.Поляризованный свет.
- •21. Оптически активные вещества.
- •23.Схема прохождения света при проведении поляриметрического анализа.
- •25. Приборы для нефелометрического анализа.
- •26. Применение нефелометрического и турбидиметрического анализов.
- •27. Устройство и принцип работы фотонефелометра.(фн-р)
- •28. Основы спектроскопии.
- •29. Классификация спектр. Методов:
- •30. Основы теории оптических атомных спектров. Строение оптических спектров.
- •31.Схема энергетических состояний атомов.
- •32. Спектр поглощения и излучения химических элементов.
- •33.Основы теории молекулярных спектров.
- •34. Физические основы фотометрии
- •35. Виды спектров в фотометрии.
- •36. Количественный фотометрический анализ.
- •37. Приборы для фотометрического анализа
- •38. Применение фотометрии.
- •39. Физические основы ик-спектроскопии.
- •40.Основные характеристики ик-спектров.
- •41.Подготовка проб к анализу в ик-спектроскопии.
- •42.Особенности конструкций ик-спектрометров.
- •43.Интерпритация ик-спектров.
- •44.Физические основы люминисценции.
- •45.Люминисцентный анализ.
- •46.Возникновение люминисценции.
- •47.Электронные спектры поглощения и спектры люминесценции (излучения)
- •48. Выход и гашение люминесценции
- •49. Качествен. И количествен. Люминесцентный анализ.
- •50.Оптическая схема возбуждающей ветви фотометра люминисцентного анализа.
- •51.Блок-схема атомно-эмиссионного спектрометра
- •52.Устройство атомизации вещества и возбуждения спектров
- •53. Способы атомизации веществ. Дуга
- •54 Лампа с полым катодом
- •55.Индуктивно-связанная плазма (исп)
- •56.Анализаторы (монохроматоры)
- •57.Способы детектирования излучения.
- •58.Фотоэлектрическое детектирование.
- •59.Расшифровка спектров атомной эмиссии.
- •60.Структура атласа спектров и таблиц спектральных линий. Аналитические линии спектра элемента.
- •61.Количественный атомно-эмиссионный анализ. Способы оценки интенсивности спектральных линий
- •62.Фотометрия пламени.
- •65. Электротермические атомизаторы.
- •68 Количественный аа анализ. М-д аас ( атомно- абсорбционной спектроскомии)
- •70. Возбуждение атомных электронов рентгеновским излучателем
- •71. Рентгетно-флуарисцентный анализ
- •72. Рс состоит из:
- •75 Детекторы, газоразрядная трубка, полупроводниковый детектор.
- •76, Качественный и количественный рентгеноспектральный анализ и его применение
- •77.Оптическая микроскопия. Подготовка образцов.
- •78. Устройство и принцип действия оптических микроскопов.
- •79. Разрешающая способность микроскопа.
- •80. Количественная металлография. Точечный, линейный и плоскостной анализы структуры материала
- •81. Устройство и принцип действия электронного микроскопа
- •82. Получение изображения в электронном микроскопе
- •83. Подготовка образцов для просвечивающей микроскопии
- •84. Схема растрового электронного микроскопа
- •85. Термический анализ
- •86. Дифференциальный термический анализ.
- •87. Дифференциальные кривые нагревания.
- •88.Комбинированные термопары
- •89.Термогравиметрический анализ.(тгма)
- •90. Диф. Термогравиметрическая кривая (дтг)
- •96.Понятие химический сенсор. Классификация сенсоров.
- •1 .Органолептический анализ. Классификация его видов.
- •2. Основы визуального органолептического анализа.
25. Приборы для нефелометрического анализа.
Нефелом исследование проводят, кот называются нефелометрами. Наибольшее распространение получили нефелометры НФМ., кот действует на основании принципа уравновешивания при визуальном наблюдении 2х световых потоков: одного из рассеивающей взвеси (суспензии), кот. анализируется и др, образ-ся при прохождении через матовое или молочное стекло. Уравнивание потоков производится с помощью диафрагм, которые называются уравнителями.
Схема нефелометра НФМ.
1- эл. лампа; 2- светофильтр; 3- стекл. пластинка; 4- кювета с анализ. раст; 5- ловушка света; 6- стекл. рассеиватель; 7, 7!- линза; 8,8! – уравнительная диафрагма; 9,9!- линза; 10,10! – ромбическая призма; 11- светофильтр; 12- окуляр.
Принцип работы.
Световой поток от эл. лампы 1 проходит через светофильтр 2 и попадает на стекл. пластину 3. На этой пластинке часть светового потока отражается и попадает на стекл. рассеиватель 6, а др. часть свет. потока проходит через пластинку 3 и попадает в кювету 4, кот. заполнена исслед. раств. Световой поток, прошедший через кювету, гасится в ловушке 5. Часть светового потока, кот. отразилась от частиц в раств., проходит через линзу 7, уравнительную диафрагму 8! и линзу 9!, и при помощи ромбической линзы 10! направляется через светофильтр 11 в окуляр 12, освещая т.о. одну половинку оптического поля.
Световой поток от рассеивателя 6 проходит такой же путь: через линзу 7; уравнительную диафрагму8; линзу 9, ромбич. призму 10, светофильтр 11 и попадает в окуляр 12, освещая вторую половину оптического поля.
При проведении нефелометрических измерений используют калибровочный график, зависимости показаний уравнительной диафрагмы от конц. стандартных растворов.
Используя калибровочный график определяют конц. анализируемого раствора по показаниям уравнительной диафрагмы 8!.
Ошибка метода – 10-15%, она складывается из 2х ошибок: ошибки проведения самого измерения и ошибки при подготовке стандартных растворов.
26. Применение нефелометрического и турбидиметрического анализов.
Эти анализы используют для исследования процессов, в основе кот. химические реакции, сопровождающ. образованием твердых продуктов.
Химические реакции должны соответствовать след. требованиям:
1. получаемые осадки должны быть практически не растворимы;
2. осадки должны быть в виде взвесей с воспроизводимым размером частиц, оптическими свойствами.
3. взвеси должны быть стойкими во времени, т.е. не должны оседать в теч. достаточно длительного времени.
Нефелометрич-е и турбидиметрич-е измерения применяются в решении аналитических задач, когда вещества нельзя определить фотометрическими методами. Но они менее точны, чем фотометрические методы.
Часто турбидиметр. методы использ. для титрования. В этом случае турбидиметр использ. в качестве индикаторного прибора. С его помощью устанавливается точка эквивалентности. По мере титрования, кот. сопровождается образованием осадка в виде устойчивой взвеси, светопоглощение взвеси увеличивается. А после окончания образования твердых частиц за точкой эквивалентности, светопоглощение остается постоянным. И точка изгиба зависимости светового потока от объема титрования соответствует т.э.
