Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
krome_41i_44.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
3.06 Mб
Скачать

10.Решение слу матричным методом.

Ма́тричный метод решения (метод решения через обратную матрицу) систем линейных алгебраических уравнений с ненулевым определителем состоит в следующем.

Пусть дана система линейных уравнений с   неизвестными (над произвольным полем):

Тогда её можно переписать в матричной форме:

, где   — основная матрица системы,   и   — столбцы свободных членов и решений системы соответственно:

Умножим это матричное уравнение слева на   — матрицу, обратную к матрице  : 

Так как  , получаем  . Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A:

Для однородной системы линейных уравнений, то есть когда вектор  , действительно обратное правило: система   имеет ненулевое решение только если  . Такая связь между решениями однородных и неоднородных систем линейных уравнений носит название альтернативы Фредгольма.

11.Формулы Крамера для решения слу.

Для системы   линейных уравнений с   неизвестными (над произвольным полем)

с определителем матрицы системы  , отличным от нуля, решение записывается в виде

(i-ый столбец матрицы системы заменяется столбцом свободных членов). В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

В этой форме формула Крамера справедлива без предположения, что   отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца(определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы   и  , либо набор   состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя HYPERLINK "http://ru.wikipedia.org/wiki/%D0%9E%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C_%D0%93%D1%80%D0%B0%D0%BC%D0%B0"Грама и Леммы Накаямы.

12.Исследование систем линейных уравнений. Теорема Кронекера-Капелли. ,  где aij – коэффициенты, а bi – постоянные. Решениями системы являются n чисел, которые при подстановке в систему превращают каждое ее уравнение в тождество. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного. Теорема Кронекера–Капелли (критерий совместности системы линейных уравнений). Для того чтобы система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу ее расширенной матрицы, т.е.  .

Замечание. Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение, если же ранг меньше числа неизвестных, то система имеет множество решений.

Пример . Исследовать систему линейных уравнений

Решение. Составим расширенную матрицу системы и с помощью элементарных преобразований вычислим одновременно ранги обеих матриц.

Далее умножим вторую строку на -2 и сложим с третьей, а затем сложим третью строку с последней. Имеем

.

Ранг матрицы системы равен трем, так как матрица имеет три ненулевых строки, а ранг расширенной матрицы равен четырем. Тогда согласно теореме Кронекера-Капелли система не имеет решений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]