
- •2.Действия над матрицами ( Свойства сложения и умножения матрицы на число ).
- •5.Определитель квадратной матрицы. Вычисление определителей 2 и 3 порядка.
- •Определитель второго порядка
- •Определитель третьего порядка
- •6. Свойства определителей.
- •7.Миноры и алгебраические дополнения элементов определителя. Разложение определителя по элементам строки (столбца).
- •8.Элементарные преобразования матриц. Ранг матрицы.
- •9.Система линейных алгебраических уравнений (слу). Основные понятия.
- •10.Решение слу матричным методом.
- •11.Формулы Крамера для решения слу.
- •13.Метод Гаусса для решения слу.
- •14. Векторы. Линейные операции над векторами.
- •15.Разложение вектора по базису.
- •16. Координаты вектора.
- •17.Направляющие косинусы.
- •18.Скалярное произведение векторов. Свойства.
- •19. Геометрический и механический смысл скалярного произведения векторов. Связь с проекциями
- •Связь с длинами
- •Связь с углами
- •20.Векторное произведение векторов. Свойства.
- •21.Смешанное произведение трех векторов. Геометрический смысл смешанного произведения.
- •22.Собственные векторы и собственные значения.
- •Уравнение прямой с угловым коэффициентом, проходящей через заданную точку.
- •Переход от уравнения прямой с угловым коэффициентом к другим видам уравнения прямой и обратно.
- •24. Общее уравнение прямой на плоскости.
- •25. Уравнение прямой в пространстве, проходящей ч/з 2 заданные точки.
- •26. Нормальное уравнение прямой. Расстояние от точки до прямой на плоскости.
- •27. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых на плоскости.
- •28. Пересечение двух прямых на плоскости.
- •36.Общее уравнение плоскости . Его частные случаи.
- •37. Взаимное расположение плоскостей.
- •38. Расстояние от точки до плоскости.
- •39.Уравнение плоскости ,проходящей через данную точку перпендикулярно данному вектору.
- •40.Уравнение плоскости, проходящей через данную точку параллельно двум данным (неколлиеарным) векторам.
- •41.Уравнение плоскости ,проходящей через две данные точки параллельно данному вектору
- •42. Уравнение плоскости ,проходящей через три данные точки.
- •43.Уравнение плоскости в отрезках.
- •44. Проектирующая плоскость.
- •45. Канонические и параметрические уравнения прямой на плоскости.
- •46. Канонические уравнения прямой в пространстве
- •47.Понятие функции
- •48.Предел функции в точке (По Коши).
- •49.Односторонние пределы.
- •18.2. Эквивалентные бесконечно малые и основные теоремы о них
8.Элементарные преобразования матриц. Ранг матрицы.
Последовательное умножение любой такой матрицы на заданную матрицу A слева (справа) называется левосторонним (правосторонним) элементарным преобразованием матрицы A. Любое элементарное преобразование может быть реализовано умножением данной матрицы (слева или справа) на соответствующую элементарную матрицу.
Элементарными называются следующие преобразования матрицы:
1) перестановка двух любых строк (или столбцов),
2) умножение строки (или столбца) на отличное от нуля число,
3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.
Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.
Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.
Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,
.
При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.
Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Обозначается r,r(A), rang A.
Минор, порядок которого определят ранг матрицы, называется базисным. У матрицы может быть несколько базисных миноров.
Свойства ранга марицы:
при транспонировании матрицы её ранг не меняется.
Если вычеркнуть из матрицы нулевой ряд, то ранг матрицы не изменится.
Ранг матрицы не изменится при элементарных преобразованиях матрицы.
Ранг канонической матрицы равен числу единиц на главной диагонали. На этом основан один из способов вычисления ранга матрицы.
9.Система линейных алгебраических уравнений (слу). Основные понятия.
Система линейных алгебраических уравнений, содержащей m уравнений и n неизвестных, называется система вида.
Здесь
—
неизвестные, которые надо определить.
Коэффициенты системы
и
её свободные члены
предполагаются
известными. Индексы коэффициента
системы
обозначают номера уравнения
и
неизвестного
,
при котором стоит этот коэффициент.
Система
называется однородной,
если все её свободные члены равны
нулю,
,
иначе — неоднородной.
Система
называется квадратной,
если число
уравнений
равно числу
неизвестных.
Решение
системы уравнений —
совокупность
чисел
,
таких что подстановка каждого
вместо
в
систему обращает все её уравнения в
тождества.
Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у нее нет ни одного решения. Совместная система может иметь одно или более решений.
Решения
и
совместной
системы называются различными,
если нарушается хотя бы одно из равенств:
Совместная система называется определенной, если она имеет единственное решение; если же у нее есть хотя бы два различных решения, то она называется неопределенной. Если уравнений больше, чем неизвестных, она называется переопределённой.