Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
krome_41i_44.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
3.06 Mб
Скачать

18.2. Эквивалентные бесконечно малые и основные теоремы о них

Среди бесконечно малых функций одного порядка особую роль играют так называемые эквивалентные бесконечно малые.

Если    то α и ß называются эквивалентными бесконечно малыми (при х→x0); это обозначается так: α~ß.

Например, sinx~х при х→0, т.к    при x→0, т. к. 

Теорема 18.1 . Предел отношения двух бесконечно малых функций не изменится, если каждую или одну из них заменить эквивалентной ей бесконечно малой.

Теорема 18.2 . Разность двух эквивалентных бесконечно малых функций есть бесконечно малая более высокого порядка, чем каждая из них.

Справедливо и обратное утверждение: если разность б.м.ф. α и ß есть бесконечно малая высшего порядка, чем α или ß, то α и ß — эквивалентные бесконечно малые.

Действительно, так как

  т. е.    Отсюда     т. е. α~ß. Аналогично,   если  то α~ß.

Теорема 18.3 . Сумма конечного числа бесконечно малых функций разных порядков эквивалентна слагаемому низшего порядка.

Докажем теорему для двух функций. Пусть α→0, ß→0 при х→хо, причем α — б.м.ф. высшего порядка, чем ß, т. е.   . Тогда

Следовательно, α+ß~ß при х→х0.

Слагаемое, эквивалентное сумме бесконечно малых, называется главной частью этой суммы.

Замена суммы б.м.ф. ее главной частью называется отбрасыванием бесконечно малых высшего порядка.

<< Пример 18.5

Найти предел 

Решение:

поскольку

3х+7х2~3х и sin2х~2х при х→0.

54.Точки разрыва функции и их классификация.

Если функция f (x) не является непрерывной в точке x = a, то говорят, что f (x) имеет разрыв в этой точке. На рисунке 1 схематически изображены графики четырех функций, две из которых непрерывны при x = a, а две имеют разрыв.

Непрерывна при x = a.

Имеет разрыв при x = a.

Непрерывна при x = a.

Имеет разрыв при x = a.

Рисунок 1.

Классификация точек разрыва функции

Все точки разрыва функции разделяются на точки разрыва первого и второго рода.  Говорят, что функция f (x) имеет точку разрыва первого рода при x = a, если в это точке

  • Существуют левосторонний предел   и правосторонний предел  ;

  • Эти односторонние пределы конечны.

При этом возможно следующие два случая:

  • Левосторонний предел и правосторонний предел равны друг другу:

Такая точка называется точкой устранимого разрыва.

  • Левосторонний предел и правосторонний предел не равны друг другу:

Такая точка называется точкой конечного разрыва. Модуль разности значений односторонних пределов  называется скачком функции.

Функция f (x) имеет точку разрыва второго рода при x = a, если по крайней мере один из односторонних пределов не существует или равен бесконечности. 

55.Свойства непрерывных функций.

Определение 1. Функция f(x) называется непрерывной в точке x0, если  .

Дадим несколько расшифровок этого важнейшего определения.

а) Вспоминая понятие предела, запишем непрерывность f(x) в точке х0 в виде

б) Так как х0=lim x, то непрерывность в точке х0 можно записать в виде

Отсюда следует важнейшее свойство непрерывной функции: для непрерывной функции можно переставлять местами знак функции и знак предельного перехода

в) Обозначим x=x-x0 (приращение аргумента) и f=f(x)-f(x0) (приращение функции). Тогда непрерывность в точке х0 означает, что  , т.е. бесконечно-малому приращению аргумента соответствует бесконечно-малое приращение функции.

Введем обозначения:

если эти пределы существуют.

Определение 2. Функция f(x) называется непрерывной в точке х0 слева (справа) если f(x0)=f(x0 – 0) (f(x0)=f(x0+0)). Очевидно,что непрерывность в точке х0 означает непрерывность слева и справа одновременно.

Определение 3. Функция f(x) называется непрерывной на некотором множестве Х, если она непрерывна в каждой точке этого множества, т.е. если

Обратите внимание, где стоит квантор , это важно.

Определение. Если функция f(x) не является непрерывной в точке х0, то говорят, что в точке х0 функция f(x) имеет разрыв.

Типы разрывов

А. Пусть существуют конечные f(x0-0) и f(x0+0), но они не равны друг другу . Тогда говорят, что в точке х0функция f(x) имеет разрыв I рода или скачек.

График функции f(x) в окрестности точки х0 имеет в этом случае примерно такой вид:

Величина |f(x0+0)-f(x0-0)| называется величиной скачка функции f(x) в точке х0.

Б. Если хотя бы один из пределов  бесконечен или не существует, то говорят, что в точке х0 функция f(x) имеет разрыв второго рода.

Виды графика функции f(x) в окрестности точки х0 в этом случае гораздо разнообразнее. Некоторые возможные варианты приведены ниже.

Свойства непрерывных функций. Непрерывность сложной функции

Теорема 1. Пусть функции f(x) и g(x) непрерывны в точке х0. Тогда функция f(x) не равная g(x), f(x)g(x) и   (если g(x) не равно 0) непрерывны в точке x0.

Доказательство.

Пусть f(x) и g(x) непрерывны в точке x0. Это значит, что  . Но тогда, по свойствам пределов

Последнее свойство верно, если  . 

Пусть y=f(x), но x, в свою очередь, является функцией некоторого аргумента t: x=(t). Тогда комбинация y=f((t)) называется сложной функцией, или суперпозицией функции (t).

Примеры:

а) y=sin(x), x=et => y=sin(et)

б) y= ex , x=sin(t) => y= esin(t)

 

Теорема о непрерывности сложной функции.

Пусть функция (t) непрерывна в точке t0 и функция f(x) непрерывна в точке х0=(t0). Тогда функция f((t)) непрерывна в точке t0.

Доказательство.

Для доказательства этой теоремы воспользуемся формальным преобразованием двух строчек кванторов. Имеем

Выписывая подчеркнутые кванторы, получим, что

,

что и говорит о том, что f((t)) непрерывна в точке t0. 

Обратите внимание на следующие детали:

а) т.к. x=(t), то |(t)-(t0)|< может быть записано как |x-x0|<, и f(x) превращается в F((t));

б) при определении непрерывности (t) в точке t0 в первом кванторе стоит буква . Это необходимо для согласования с квантором   в предыдущей строке и взаимного уничтожения  . Любая другая буква на этом месте не дала бы верного результата.

Теоремы о непрерывных функциях

Перейдем к доказательству важнейших теорем о непрерывных функциях.

Первая теорема Больцано-Коши.Пусть f(x) определена и непрерывна на отрезке [a,b] и на концах этого отрезка принимает разные по знаку значения.Тогда существует такая точка с принадлежащая [а,b] в которой f(c)=0.

Доказательство.

Пусть, для определенности, f(a)<0, f(b)>0. Ситуация выглядит так:

Для доказательства теоремы снова используем метод деления отрезка пополам.

  1. Деление отрезков пополам.

Разделим отрезок [a, b] пополам. Середина его будет точка  . Тогда возможны такие варианты:

а) . В этом случае, взяв  , теорему можно считать доказанной.

б)  . В этом случае для дальнейшего рассмотрения оставим отрезок  , который обозначим [a1, b1].

в)  В этом случае для дальнейшего рассмотрения оставим отрезок  , который обозначим [a1, b1].

Проделаем такую же процедуру с отрезком [a1, b1], получив отрезок [a2, b2], затем то же самое с отрезком [a2, b2], получив отрезок [a3, b3] и т.д. Заметим, что для дальнейшего рассмотрения все время оставляется тот отрезок, для которого f(an)<0 и f(bn)>0.

  1. Построение точки С.

В результате этой процедуры возможны два варианта.

А. На каком-то шаге n получится, что . В этом случае в качестве точки С следует взять   и теорема будет доказана.

Б. .

В этом случае мы получаем систему отрезков [an, bn], для которой

а) [a,b][a1, b1] [a2, b2][a3, b3]…

б)

в)f(an)<0; f(bn)>0

Но тогда, по лемме о вложенных отрезках, существует  . Используя непрерывность функции f(x), получим

т.к. всегда было f(an)<0, f(bn)>0. Сравнивая эти два неравенства получим, что f(c)=0, что и требовалось доказать.

Вторая теорема Больцано-Коши. Пустьf(x) определена и непрерывна на отрезке <a,b> и  . Тогда  m<C<M  с<a,b> f(c)=C.

Примечание. Символ < означает любой из двух символов – ( или [, а символ > - любой из двух символов - ) или ]. Таким образом, отрезок <a, b> означает любой из следующих отрезков – [a,b], (a,b], [a,b), или (a,b).

Доказательство.

Так как к супремуму и инфимуму можно подойти сколь угодно близко, то можно утверждать, что

x1<a, b> m<f(x1)<C

x2<a, b> C<f(x2)<M

Очевидно, что отрезок [x1, x2] <a, b>.

Рассмотрим функцию  (x)=f(x)-C. Для нее имеем:

 (x1)=f(x1)-C<0;  (x2)=f(x2)-C>0.

Согласно первой теореме Больцано-Коши, с<a, b>, такая, что  (с)=0. Но тогда эта же точка с<a, b> и для нее (с)=f(c)-C=0, т.е. f(c)=C. 

Первая теорема Вейерштрасса.

Пусть функция f(x) определена и непрерывна на замкнутом отрезке [a, b]. Тогда она ограничена на этом отрезке, т.е. существуют такие числа m и M, что  x принадлежащего [a,b] f(x) больше либо равно m и меньше либо равно M.

Доказательство.

Доказательство этой теоремы проведем методом от противного.

Предположим противное – пусть, например, функция f(x) неограничена сверху.

  1. Построение последовательности. Мы предположили, что f(x) неограничена сверху на [a,b]. Это означает, что для любого числа А найдется такая точка x[a,b], что f(x)>A.

Возьмем в качестве числа А числа 1, 2, 3, 4,… Тогда  , что f(xn)>n.Мы получили, таким образом, некоторую последовательность {xn}[a,b] и удовлетворяющую свойству f(xn)>n.

  1. Выделение подпоследовательности. Так как последовательность {xn} ограничена, то по лемме Больцано-Вейерштрасса из нее можно выделить сходящуюся последовательность {xn}, т.е. В силу замкнутостиотрезка [a, b] точка c [a,b]. (Отметим,что в этом месте используется ограничение теоремы – замкнутость [a,b]. Если бы, например, был (a,b), то с могла бы и не принадлежать (a,b)).

  2. Сведение к противоречию.Т.к. согласно п.1  , то, переходя к пределу kполучим  т.е. f(c)=+, что противоречит условию теоремы, где сказано, что f(x) определена на отрезке [a,b],что означает, что f(c) должна иметь конечное значение. 

Вторая теорема Вейерштрасса.

Пусть функция f(x) определена и непрерывна на замкнутом отрезке[a,b]. Тогда существуют такие точки x1, x2 принадлежащие [a,b], что  , т.е. инфимум и супремум f(x) достигаются на [a,b].

Доказательство.

Докажем теорему только для супремума.

  1. Построение последовательности. По первой теореме Вейерштрасса, f(x) ограничена сверху на [a,b],т.е. 

По свойствам супремума, к нему можно подойти сколь угодно близко. Поэтому  . Беря n=1,2,3,… получим последовательность {x1, x2, x3,…}такую, что  .

  1. Выделение подпоследовательности. Т.к.  n a xn b, то по лемме Больцано-Вейерштрасса, из последовательности {xn} можно выделить сходящуюся подпоследовательность   такую, что  , причем с[a,b] в силу его замкнутости.

  2. Достижение супремума. Для нашей подпоследовательности верно условие

.

4.Переходя к пределу k получим

.

Но  , кроме того, в силу непрерывности f(x),  . В результате получим, что Mf(c) M, т.е. f(c)=M и супремум f(x) достигается в точке с.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]