
- •Основные свойства числовых систем
- •4 В области n непосредственно следует за 3. 4 в области n не является непосредственно следую-щим за 2, так как имеется число 3 (3 из n), которое лежит между 2 и 4.
- •2, Аксиоматическпй подход к изучению натуральных чисел
- •Переместительных свойств:
- •4.Десятичное измерение отрезка и появление действительных чисел
- •Можно представить числа на схеме
- •Свойства числовой области относительно порядка
- •5.Арифметические действия над разными числами их свойства
- •Порядок действий в вычислительных операциях
- •6.Целые неотрицательные числа и отношение делимости
- •7. Дроби и операции над ними
- •Арифметические операции с конечными десятичными дробями
- •Преобразование форм представления дробных чисел
- •Положительные и отрицательные чис '
- •Можно представить числа на схеме
- •Применение приближённых вычислений
- •2. Уравнение и его решение.
- •3.Неравенство с переменной и его решение.
- •Основные понятия математической статистики
- •2.График кривой Гаусса симметричен относительно
- •3.Симметричность и вытянутость графика, а значит
- •55554444444333333332 До эксперимента
- •55545544345444433333 После эксперимента
- •1) Наличие матрицы (таблицы) не меньше 3-го порядка;
- •2) Все коэффициенты корреляции положительные;
- •3) Все коэффициенты коррел. Статистически значимые.
- •1) Наличие матрицы (таблицы) не меньше 3-го порядка;
- •2) Все коэффициенты корреляции положительные;
- •3) Все коэффициенты коррел. Статистически значимые.
- •Качалко,в.Б. Поисково-исследовательская технология начального обучения математике /в.Б. Качалко.–Мозырь: мгпу им. И.П. Шамякина, --2008.-142с.
- •Тематика докладов и их содержание по методике обучения младших щкольников решению задач
- •З простай і састаўной задачамі
- •5 І 4 лікавыя дадзеныя задачы
- •3. Да састаўленых задач падабраць патрэбныя выразы:
- •Решение:
- •Синтетический способ
- •Рассуждаем по схеме:
- •1) Как результат, ответ на вопрос задачи;
- •2) Как процесс нахождения этого результата;
- •3) Как перечень тех действий, которые
- •3) (27: 3) – 3 – Было тетрадей у Алеся
- •1 2 3 4 5 6 7 8 1 2 3 4 5 Пабудаваць дыяграму працягласці жыцця людзей:
- •1. Іваноў-10г. 2.Пятроў –30г. 3.Сідараў-50г.
- •4. Радзімаў-40г. 5.Антонаў -20г.
- •1. Паўтарэнне нумарацыі 3-х і чатырохзначных лікаў.
- •2. Выкарыстанне лічыльнікаў: паказ, дзе, на якім дроціку адкладваюцца адз. Тыс., дзес. Тыс., сотні тысяч.
- •3. Прымяненне табліцы разрадаў і класаў:
- •5. Складанне і адніманне найменных лікаў праводзіцца пасля папярэдняга прадстаўлення іх ў аднолькавых най-меннях і выконвацца так, як і над абстрактнымі лікамі:
- •6. Складанне і адніманне найменных лікаў у прасцей-шых выпадках без прадстаўлення лікаў ў аднолькавых мерах: 5км 750м
- •1. Увядзенне тэарэтычнай асновы дзялення:
- •3. Множанне ліку з нулямі ў канцы запісу: 189 000
- •5. Пісьмовае множанне найменных лікаў:
- •6. Множанне многазначнага на трохзначны лік
- •7. Множанне многазначных лікаў з нулямі ў сярэдзіне і канцы: 829 8290 6700
- •Основы математической статистики
- •Содержание
- •Содержание
- •Самостоятельная работа 1
- •Оценки результатов учебной деятельности младших школьников по математике
- •Литература
- •Аналитический способ поиска
- •Синтетический способ поиска
- •Поиск способа решения текстовой задачи методом дополнения
- •Переформулировка задачи
- •К раткая запись
- •Алгебраический способ решения
- •Геометрический способ решения
- •У Алеся у Миши у Лёни
- •Дополнительные способы работы над задачей
- •За курс начальных классов
- •Литература основная
- •Дополнительная
Литература
1. Десятибалльная система. Безотметочное обучение: оценка результатов учебной деятельности младших школьников /Под. ред. О.Е.Лисейчикова – Мн.: Пачатковая школа, 2002 – 104 с.
СПОСОБЫ ПОИСКА
РЕШЕНИЯ ТЕКСТОВЫХ ЗАДАЧ В НАЧАЛЬНЫЪХ КЛАССАХ
Аналитический способ поиска
Любая составная задача сводится к решению простых задач, из которых она составлена. При поиске способа решения можно идти от основного вопроса задачи. В этом случае разбор задачи мы называем аналитическим.
Для решения составляем первую простую задачу, начиная с вопроса составной задачи. Искомое составной задачи принимаем за искомое первой простой задачи.
Ставим вопрос, какая пара данных из составной задачи необходима, зная которую, можно было бы определить искомое первой простой задачи.
Так как численные значения одного, а иногда и обоих намеченных данных неизвестны, то составленную таким образом простую задачу решить нельзя: можно лишь указать действие, которое нужно произвести над выбранными данными, чтобы определить искомое.
Данное, численное значение которого неизвестно, представляет собой одно из неявных искомых составной задачи и должно стать искомым для следующей простой задачи.
Процесс выделения простых задач продолжается до тех пор, пока не дойдем до задачи, у которой численные значения обоих данных известны из условия основной задачи.
Лишь после составления последней составной задачи можно приступить к решению этих задач, начиная с последней и постепенно переходя к первой. Решение первой задачи будет вместе с тем и решением составной задачи.
Рассмотрим этот способ на поиске решения задачи на совместную работу.
Для школы нужно изготовить 180 рам. Первая бригада может изготовить их за 36 дней, а вторая - за 45 дней. За сколько дней изготовят две бригады рамы, работая совместно?
Моделирование задачи
|
Выработка за день |
Количество дней |
Вся работа |
Первая бригада |
? рам |
36 |
180 рам |
Вторая бригада |
? рам |
45 |
180 рам |
Обе бригады |
? рам |
? |
180 рам |
Сначала проводится подготовительная работа. Выясняется, что две бригады, работая вместе, выполнят всю работу за количество дней меньшее, чем 45 дней и даже 36 дней.
В дальнейшем рассуждения ведутся по схеме:
Можно ли сразу ответить на вопрос задачи?
Почему
нельзя?
Что для этого нужно знать?
Решение:
1) 180 : 36 = 5 (р.) – изготовит 1-ая бригада за один день
2) 180 : 45 = 4 (р.) – изготовит 2-ая бригада за один день
3) 5 + 4 = 9 (р.) – изготовят обе бригады за один день
4) 180 : 9 = 20 (дн.) – за столько дней обе бригады, работая вместе, изготовя все рамы
Ответ: Обе бригады выполнят работу за 20 дней.