
- •Раздел I. Основы технической Термодинамики
- •Тема 1.1 Основные понятия и определения.
- •Термодинамическая система
- •Термодинамическое состояние и термодинамический процесс
- •Тема 1.2 Основные законы идеальных газов
- •Термические параметры состояния и единицы их измерения
- •Понятие про реальные и идеальные газы
- •Уравнение состояния термодинамической системы
- •Уравнение состояния идеального газа
- •Численное значение газовой постоянной, отнесенной к 1 кг газа (удельной газовой постоянной), можем вычислить по формуле
- •Тема 1.3 Газовые смеси
- •Уравнение Менделеева – Клайперона
- •Вопросы для самоконтроля:
- •Список используемой литературы Основная
- •Дополнительная
- •Тема 1.4 Теплоемкость газов
- •Тема 1.5 Первый закон термодинамики Вопросы темы
- •Полная и внутренняя энергии системы
- •Работа и теплота в термодинамическом процессе
- •Первый закон термодинамики
- •Графическое изображение работы
- •Энтальпия и энтропия рабочего тела
- •Тема 1.6 Процессы изменения состояния идеальных газов
- •Изохорический процесс
- •Изобарический процесс
- •Адиабатный процесс
- •Вопросы для самоконтроля:
- •Список используемой литературы Основная
- •Дополнительная
- •Тема 1.7 Второй закон термодинамики
- •Сущность и формулировки второго закона термодинамики.
- •Термический кпд. Холодильный коэффициент.
- •Истолкование второго закона термодинамики
- •Цикл Карно
- •Регенеративный цикл Карно
- •Цикл Карно
- •Математическое выражение второго закона термодинамики
- •Литература Основная
- •Дополнительная
- •Свойства и процессы реальных газов и паров.
- •Тема 1.8 Водяной пар
- •Параметры состояния жидкости и пара.
- •Основные термические процессы водяного пара
- •Тема 1.9 Влажный воздух
- •Вопросы для самоконтроля:
- •Список литературы
- •Тема 1.10 Сток и дросселирование газов и паров.
- •Вопросы для самоконтроля.
- •Список литературы
- •Тема 1.11 Термодинамический цикл теплосиловых установок.
- •Циклы двигателей внутреннего сгорания
- •Циклы газовых турбин и реактивных двигателей
- •Циклы реактивных двигателей.
- •Циклы паросиловых установок.
- •Циклы холодильных установок и тепловых насосов.
- •Цикл паровой компрессионной холодильной установки.
- •Вопросы для самоконтроля:
- •Список литературы
- •Модуль V.
- •Раздел II. Теория теплообмена
- •Тема 2.1 Основные понятия и определения. Лучистый теплообмен.
- •Сумма энергии собственного и отражательного излучения составляет эффективное излучение тела.
- •Основные законы излучения абсолютно черного тела
- •Тема 2.2 Теплопроводность
- •Закон Фурье
- •Коэффициент теплопроводности
- •Дифференциальное уравнение
- •Теплопроводность при стационарном режиме и граничных условиях первого рода
- •Тема 2.3 Конвективный теплообмен.
- •Дифференциальные уравнения конвективного теплообмена
- •Теплоотдача при кипении
- •Теплоотдача при конденсации
- •Тема 2.4 Сложный теплообмен
- •Теплопроводность при стационарном режиме и граничных условиях третьего рода (теплопередача)
- •В случае многослойной стенки
- •Вопросы для самоконтроля:
Цикл Карно
Предположим, что какое-то тело может вступать в теплообмен с двумя тепловыми резервуарами, имеющими температуры Т1 и Т2 и обладающими бесконечно большой теплоемкостью. Это означает, что получение или отдача этими резервуарами конечного количества тепла не изменяет их температуры. Выясним, какой обратимый процесс может совершать тело в этих условиях.
Рассматриваемый цикл может состоять как из процессов, в ходе которых обменивается теплом с резервуарами, так и их процессов, не сопровождающихся теплообменом с внешней средой (адиабатных процессов).
Процесс, который сопровождается обменом тепла с резервуарами, может быть обратимым только в том случае, если в ходе этого процесса температура тела будет равна температуре соответствующего резервуара. Например, тело получает тепло от резервуара с температурой Т1, имея температуру, меньшую чем Т1, то при протекании того же процесса в обратном направлении тело сможет вернуть резервуару полученное от него тепло в том случае, если его температура не ниже, чем Т1. Следовательно, при прямом и обратном ходе процесса температура тела будет различна, тело проходит в обоих случаях через различные последовательности состояний, которые характеризуются неодинаковыми температурами, и рассматриваемый процесс будет необратимым.
Таким образом, процесс, который сопровождается теплообменом, может быть обратимым только в том случае, если, получая тело и возвращая его при обратном ходе резервуара, тело имеет одну и ту же температуру, равную температуре резервуара.
Т.е. при получении тепла температура тела должна быть на бесконечно малую величину выше температуры резервуара. Таким образом, обратимый цикл, совершаемый телом (или системой), вступающим в теплообмен с двумя тепловыми резервуарами бесконечно большой емкости, может состоять только из двух изотерм (при температурах резервуаров) и двух адиабат.
Такой цикл был впервые рассмотрен французским инженером Сади Карно и носит название цикла Карно. Цикл Карно по определению обратимый.
Рассмотрим, как может быть осуществлен цикл Карно, например, с газов в качестве рабочего вещества. Поместим газ в цилиндр, закрытый плотно пригнанным поршнем. Стенки цилиндра и поршень сделаем из непроводящего тепло материала, дно цилиндра изготовим из хорошо проводящего тепло вещества. Теплоемкость цилиндра и поршня будет считать пренебрежимо малой.
Пусть первоначально поршень занимает положение, отвечающее объему V1 и температуре газа Т1. Поставим цилиндр на резервуар, имеющий температуруТ1, и предоставим газу возможность очень медленно расширяться до объема V2.
При этом газ получит от резервуара тепло Q1. Затем снимем цилиндр с резервуара, закроем дно теплоизолирующей крышкой и позволим газу расширяться адиабатически до тех пор, пока его температура не упадет до значения Т2. Объем газа в результате станет равен V3.
Теперь, убрав теплоизолирующую крышку, поставим цилиндр на резервуар с температурой Т2 и сожмем газ изотермически до такого объема V4, чтобы при последующем адиабатическом сжатии при достижении температуры Т1 объем получил значение V1 (иначе цикл не замкнется). Наконец, снимем цилиндр с резервуара, закроем дно теплоизолирующей крышкой и, сжимая газ адиабатически, приведем его в первоначальное состояние (с температурой Т1 и объемом V1).
Таким образом, К.П.Д. цикла Карно для идеального газа действительно оказывается зависящем только от температуры нагревателя и холодильника.