
- •Vilniaus gedimino technikos universitetas
- •Mikroprocesoriniai
- •Valdymo įtaisai
- •I dalis mokomoji knyga
- •Vilnius 2008
- •Turinys
- •Žymenys
- •Pratarmė
- •1. Įvadas. Pagrindinės sąvokos ir apibrėžimai
- •2. Mikroprocesoriai. Pagrindinės techninės charakteristikos
- •3. Mikroprocesorinės sistemos organizacija
- •Ir architektūra
- •1 Pav. Mps apibendrinta funkcinė grandinė: cp- centrinis procesorius;
- •2 Pav. Skaitmeninių duomenų pateikimo būdai
- •4. Mps pagrindiniai atminties architektūrų tipai
- •3 Pav. Tipinės atminčių architektūros
- •5. Mps atminties organizavimas
- •4 Pav. Baitinė tiesinės organizacijos atmintis
- •6. Programa, komanda, komandos ciklas
- •5 Pav. Komandos ciklas
- •7. Mp sistemos magistralė (sm). Sm tipai
- •6 Pav. Trijų magistralių mps
- •7 Pav. Dvieju magistralių mps
- •8 Pav. Mps su vietiniais adresų registrais: arg – adreso registras.
- •9 Pav. Mps su bendruoju adresų registru
- •10 Pav. Laikinės funkcionavimo diagramos dviejų magistralių sistemoje
- •8. Sistemos magistralės darbo ciklai
- •9. Sistemos magistralės skaitymo darbo ciklas
- •11 Pav. Trijų magistralių mps skaitymo laikinės
- •12 Pav. Dviejų magistralių mps skaitymo laikinės funkcionavimo diagramos
- •10. Sistemos magistralės rašymo darbo ciklas
- •13 Pav. Trijų magistralių mps rašymo laikinės
- •14 Pav. Dviejų magistralių mps rašymo laikinės
- •11. Sistemos magistralės pertraukties darbo ciklas
- •12. Sistemos magistralės darbo režimai
- •15 Pav. Sm klasikinio asinchroninio darbo režimo laikinės
- •16 Pav. Mažos mps sm asinchroninio darbo režimo laikinės
- •13. Mps tipinės struktūros
- •17 Pav. Apibendrinta magistralinės struktūros funkcinė grandinė: cpm – centrinio procesoriaus modulis; aįm – atminties įrenginio modulis;
- •18 Pav. Magistralinės kaskadinės struktūros funkcinė grandinė: smv – sistemos magistralės valdiklis; vsm – vidinė sistemos magistralė; p0, p1... Pn – portai.
- •19 Pav. Magistralinės radialinės struktūros funkcinė grandinė
- •14. Duomenų įvesties ir išvesties organizavimas
- •14.1. Programiniai duomenų mainai
- •20 Pav. Programiniai besąlyginiai duomenų mainai
- •21 Pav. Įvesties ir išvesties portų funkcinė grandinė
- •22 Pav. Pseudo dvikrypčio porto funkcinė grandinė
- •23 Pav. Įvesties, išvesties ir kvitavimo laikinės diagramos
- •24 Pav. Sąlyginių ciklinių duomenų mainų algoritmas
- •25 Pav. Sąlyginių ciklinių laikinių duomenų mainų algoritmas
- •26 Pav. Sąlyginių neciklinių duomenų mainų algoritmas
- •14.2. Pertrauktiniai duomenų mainai
- •27 Pav. Pertrauktiniai duomenų mainai
- •14.2.1. Radialinė pertraukčių sistema
- •28 Pav. Dinaminė pertraukties signalų priėmimo grandinė
- •29 Pav. Statinė pertraukties signalų priėmimo grandinė
- •30 Pav. Kombinuota pertraukties signalų priėmimo grandinė
- •14.2.2. Išplėstinė radialinė pertraukčių sistema
- •14.2.3. Vektorinė pertraukčių sistema
- •31 Pav. Pertrauktčių valdiklio sujungimo su sm funkcinė grandinė: cp – centrinis procesorius; pv – pertraukčių valdiklis
- •14.3. Tiesioginiai duomenų mainai
- •32 Pav. Tiesioginių duomenų mainų valdiklio sujungimo su sm funkcinė grandinė: cp – centrinis procesorius; tdmv – tiesioginių duomenų mainų valdiklis; pį0 ... PĮn – periferiniai įrenginiai.
- •15. I8085 mikroprocesoriaus mps struktūra
- •33 Pav. I8085 mikroprocesoriaus mps funkcinė grandinė: cp – i8085 centrinis procesorius; arg – adreso registras.
- •16. I8085 mikroprocesoriaus registrų segmentas
- •34 Pav. I8085 mp registrų segmentas
- •17. Bendroji i8085 mp komandų sistemos charakteristika
- •35 Pav. Komandos struktūra
- •36 Pav. Tiesioginio adresavimo komandų formatai: port – porto adresas (1 baitas); adrl – adreso jaunesnysis baitas; adrh – adreso vyresnysis baitas.
- •37 Pav. Tiesioginio registrų adresavimo komandos formatas.
- •38 Pav. Betarpiško adresavimo komandos formatas: db – duomenų baitas; dbh – duomenų vyresnysis baitas; dbl – duomenų jaunesnysis baitas;
- •Aritmetinės ir loginės komandos.
- •Paprogramių komandos.
- •Įvesties ir išvesties bei specialiosios komandos.
- •18. Duomenų perkėlimo (perdavimo) ir dėklo (steko) atminties komandos
- •1 Lentelė. Duomenų perdavimo ir dėklo (steko) atminties komandos
- •19. Aritmetinės ir loginės komandos
- •2 Lentelė. Aritmetinės ir loginės komandos
- •39 Pav. Rlc, ral postūmio į kairę komandų veikimas
- •40 Pav. Rrc, rar postūmio į dešinę komandų veikimas
- •20. Valdymo nukreipimo (perdavimo) komandos
- •3 Lentelė. Valdymo perdavimo (nukreipimo) komandos
- •4 Lentelė.Valdymo perdavimo komandos, kai kontroliuojamas
- •5 Lentelė. Valdymo perdavimo komandų sekos, priklausančios
- •21. Paprogramių komandos
- •6 Lentelė. Kreipimosi į paprogrames ir grįžimo komandos
- •22. Įvesties ir išvesties bei specialiosios komandos
- •7 Lentelė. Įvesties ir išvesties bei specialiosios komandos
- •8 Lentelė. Pertraukčių prioritetinė eilė ir pradiniai (starto) adresai
- •9 Lentelė. Skaitymo rim komanda rezultatas
- •10 Lentelė. Valdymas sim rašymo komanda
- •41 Pav. Rst n komandos formatas:
- •11 Lentelė. Rst n komandos perėjimų (starto) adresai ir
- •23. I8085 mp vidinė struktūra, valdymo signalai
- •42 Pav. Mikroprocesoriaus i8085 sutartinis grafinis ženklas
- •44 Pav. Taktavimo grandinės, naudojant vidinį taktinio dažnio generatorių: a) su zq kvarciniu rezonatoriumi; b) su r – c grandine; c) su l – c grandine.
- •45 Pav. Taktavimo grandinės su išoriniu taktinio dažnio generatoriumi: fT – išorinio taktinio dažnio generatoriaus generuojamų impulsų dažnis.
- •46 Pav. I8085 mp vidinė sinchronizavimo grandinė: ss – sinchronizavimo grandinės stiprintuvas; t – skaitmeninis trigeris; bs1, bs2 – buferiniai stiprintuvai;
- •47 Pav. Išorinė tipinė pradinio nustatymo grandinė
- •24. I8085 mp funkcionavimo laiko ciklai
- •48 Pav. Mikrotaktinis ciklas (taktas)
- •49 Pav. Mikroprocesoriaus funkcionavimo laiko ciklai
- •25. Skaitymo darbo ciklo laikinės funkcionavimo diagramos
- •50 Pav. Skaitymo darbo ciklo laikinės funkcionavimo diagramos
- •26. Rašymo darbo ciklo laikinės funkcionavimo diagramos
- •51 Pav. Rašymo darbo ciklo laikinės funkcionavimo diagramos
- •27. Pertraukties darbo ciklo laikinės funkcionavimo diagramos
- •53 Pav. Laikinės funkcionavimo diagramos, kai pertrauties
- •Vektorius yra rst n komanda
- •28. Tiesioginių duomenų mainų darbo ciklo laikinės funkcionavimo diagramos
- •29. Sustojimo darbo ciklo laikinės funkcionavimo diagramos
- •56 Pav. Sustojimo darbo ciklo laikinės funkcionavimo diagramos
- •30. I8085 mikroprocesoriaus modulis
- •58 Pav. Sistemos valdiklio funkcinė grandinė
- •12 Lentelė. Sistemos valdiklio būsenos
- •59 Pav. I8282/83 tipo registrų sutartinis grafinis ženklas ir
- •Vidinė funkcinė grandinė
- •60 Pav. I8286/87 buferinių formuotuvų sutartinis grafinis ženklas ir
- •Vidinė funkcinė grandinė
- •31. Mps atminties įrenginys
- •61 Pav. Statinės oa kr537ru8a/ru8b sutartinis grafinis ženklas
- •13 Lentelė. Statinės operatyviosios atminties kr537 ru8a/b būsenos
- •14 Lentelė. Loginės grandinės būsenos
- •62 Pav. Signalų sujungimo loginės grandinės
- •63 Pav. Dinaminės oa kr565 ru5 sutartinis grafinis ženklas
- •15 Lentelė. Dinaminės operatyviosios atminties kr565 ru5b/V/g/d būsenos
- •64 Pav. Pastoviosios atminties dig k573 rf5 sutartinis grafinis ženklas
- •16 Lentelė. Pastoviosios atminties kr573 rf5 būsenos
- •32. Įvesties ir išvesties įrenginys
- •32.1. Programuojamasis lygiagretusis periferinis adapteris (pio), struktūra, valdymo signalai
- •65 Pav. I8255 periferinio adapterio sutartinis grafinis ženklas
- •66 Pav. I8255 periferinio adapterio vidinė funkcinė grandinė
- •67 Pav. A, b portų organizacijos grandinė: a) a porto; b) b porto.
- •17 Lentelė. Pio būsenos
- •32.1.1. Pio darbo režimai ir sujungimų funkcinė grandinė
- •18 Lentelė. Pio ms formatas
- •68 Pav. I8255 0 darbo režimas
- •69 Pav. I8255 1 darbo režimas
- •70 Pav. Duomenų mainų signalų kitimas
- •19 Lentelė. Pio bsr formatas
- •71 Pav. I8255 2 darbo režimas
- •72 Pav. Pio sujungimo su sistemos magistrale
- •32.2.Universalusis sinchroninis, asinchroninis imtuvas ir siųstuvas (usart), struktūra, valdymo signalai
- •73 Pav. I8251 adapterio sutartinis grafinis ženklas
- •74 Pav. I8251 adapterio vidinė funkcinė grandinė
- •20 Lentelė. Usart būsenos
- •32.2.1. Usart valdymo bei būsenos žodžiai ir sujungimų funkcinė grandinė
- •21 Lentelė. Usart asinchroninio darbo režimo mi formatas
- •22 Lentelė. Usart sinchroninio darbo režimo mi formatas
- •23 Lentelė. Usart ci žodžio formatas
- •24 Lentelė. Usart sw žodžio formatas
- •75 Pav. Usart sujungimo su sm funkcinė grandinė
- •33. Programuojamasis intervalinis laikmatis (pit), struktūra, valdymo signalai
- •76 Pav. Pit i8253 sutartinis grafinis ženklas
- •77 Pav. Pit i8253 vidinė funkcinė grandinė
- •25 Lentelė. Pit būsenos
- •33.1. Pit darbo režimai ir sujungimų funkcinė grandinė
- •26 Lentelė. Pit cw formatas
- •78 Pav. 0 režimo laikinė diagrama
- •79 Pav. 1 režimo laikinės diagramos
- •80 Pav. 2 režimo laikinė diagrama
- •81 Pav. 3 režimo laikinė diagrama
- •82 Pav. 4 režimo laikinė diagrama
- •83 Pav. 5 režimo laikinės diagramos
- •27 Lentelė. Gate signalo kitimas ir valdymo funkcijos
- •84 Pav. Pit sujungimo su sm funkcinė grandinė Literatūra
2 Pav. Skaitmeninių duomenų pateikimo būdai
Analoginiams duomenims priimti iš išorinio objekto naudojamas analoginis skaitmeninis keitiklis (ASK), kuris analoginę įtampą (srovę) keičia skaitmeniniu dvejetainiu kodu. Analoginiams duomenims perduoti į išorinį objektą taikomas skaitmeninis analoginis keitiklis (SAK), kuris skaitmeninį dvejetainį kodą paverčia analogine įtampa (srove). ASK ir SAK suderina signalų rūšis tarp MPS ir išorinio objekto, su kuriuo vyksta duomenų mainai.
MP sistemos magistralė yra atvira, prie jos gali būti jungiami ir kiti įrenginiai. Dažnai MPS naudojamas įrenginys yra realaus laiko skaičiavimo įtaisas – laikmatis, jungiamas prie SM.
Bendruoju atveju MPS funkcionuoja taip: įjungus maitinimo įtampą MP iš AĮ pagal pradinį adresą (0000H – nulinį) skaito pirmąją komandą. Ji dešifruojama MP, formuojami jai vykdyti reikalingi valdymo signalai ir komanda vykdoma. Po to MP skaito antrą komandą iš AĮ ir t.t.
Visos komandos vykdomos griežtai nuosekliai viena paskui kitą. Kiekvienu laiko momentu atliekama tik viena komanda.
4. Mps pagrindiniai atminties architektūrų tipai
MPS naudojami du pagrindiniai atminties architektūrų tipai:
Dž. fon Neimano (matematiko, kuris pasiūlė koduoti programas taip pat kaip ir duomenis).
Harvardo laboratorijos (Prinstono universiteto).
Pagal pirmąją architektūrą programos komandų kodai ir duomenys reikalingi jai vykdyti talpinami vieningame atminties lauke ir nėra jokio skirtumo tarp komandos ir duomenų. Komanda atskiriama nuo duomenų tik ją įvedus į MP ir dešifravus.
Pagal antrąją architektūrą yra dvi fiziškai skirtingos atminties sritys, skirtos programoms ir duomenims saugoti. Programos komandos saugojamos programų atmintyje – kodų segmente CSEG (angl. Code Segment), o duomenys duomenų atmintyje – duomenų segmente DSEG (angl. Date Segment). Kiekviena sritis turi savo adresų lauką ir skirtingus kreipimosi į jas būdus.
Harvardo laboratorijos architektūra būdinga vienkristaliams mikrovaldikliams, kuriuose, naudojant RISC architektūrą, gaunami šie pagrindinius privalumai:
kompaktiškesnės komandos ir paprastesnė komandų sistema;
sutrumpėja programos ir ekonomiškiau išnaudojama programų atmintis (programų atmintis tesiekia 1K ... 2K baitų ir yra VMV viduje).
Toliau tobulinant atminties architektūrą, išskirta speciali nedidelės talpos duomenų atminties sritis vadinama registrų segmentu RSEG (angl. Register Segment). RSEG sudaro progamiškai valdomų registrų rinkinys, skirtas ribotam duomenų kiekiui laikinai saugoti, talpinamas MP viduje. RSEG dažniausiai visiškai izoliuotas nuo DSEG, tačiau kai kada iš dalies RSEG ir DSEG sritys gali persidengti (vienkristaliuose mikrovaldikliuose). Tada atskiri RSEG registrai gali būti laikomi paprastomis duomenų atminties ląstelėmis. Tokia organizacija ypač tikslinga, kai būtina didelė duomenų mainų sparta. Bet kurios architektūros MPS turi RSEG, tačiau jo loginė organizacija ir struktūra priklauso nuo konkretaus MP tipo.
Duomenų mainams su išoriniais įrenginiais išskiriama speciali atminties sritis vadinama įvesties ir išvesties segmentu IOSEG (angl. Input/Output Segment). Per šią sritį duomenys perduodami į išorinius įrenginius ir priimamai iš jų. Paprasčiausias įvesties ir išvesties segmentas yra adresuojamų registrų rinkinys kartu su buferiniais stiprintuvais, sudarantys išorinius prievadus (portus), per kuriuos vyksta duomenų mainai su išoriniai objektais ir vidiniais sistemos elementais. IOSEG paskirtis dvejopa:
saugoti priimtus duomenis;
saugoti paruoštus perduoti duomenis.
MPS atmintis gali būti organizuota, naudojant IOSEG, dviem būdais:
Su atskiru („izoliuotu“) IOSEG.
Su bendru („neizoliuotu“) IOSEG.
Pirmuoju atveju naudojamos specialiosios įvesties ir išvesties komandos bei atskiras IOSEG logiškai izoliuotas nuo kitų duomenų sričių.
Antruoju atveju IOSEG nėra logiškai izoliuotas, nes DSEG duomenų atmintyje išskiriama sritis (IOSEG), per kurią vyksta duomenų mainai. Šiuo atveju kreipimasis į tokį IOSEG niekuo nesiskiria nuo duomenų rašymo ir skaitymo procesų susijusių su atminties ląstele, naudojant įprastines duomenų atminties valdymo komandas.
Grafiškai keturi tipiniai programų ir duomenų saugojimo atminties architektūrų tipai pavaizduoti 3 pav. Rodyklėmis parodytas atminčių atskyrimo procesas, kuris sukuria naują atminties architektūrą. Visi tipiniai atminties sričių rinkiniai realiai egzistuoja ir yra realizuoti konkrečiose MPS. Kiekvienas atminties tipas turi savo privalumus ir trūkumus, kuriuos įvertinant galima sukurti efektyvias įvairios paskirties sistemas.