
- •Условные обозначения
- •Введение
- •Раздел 5 – химмотологические карты лесных машин написал совместно с доцентом кафедры «МиОлк» Паршуковым н. Е.
- •Понятие о химмотологии
- •2.2 Краткие сведения о современных методах получения топлив и масел
- •2. 2.1 Получение топлив прямой перегонкой
- •2.2.2 Получение топлив деструктивной переработкой
- •2.3 Состав и свойства жидкого топлива
- •2.3.1 Теплота сгорания топлива [5]
- •2.3.2 Определение количества воздуха, необходимого для горения топлива
- •2.3.3 Определение продуктов сгорания топлива
- •2.4 Получение масел
- •2.4.1 Назначение смазочных материалов и виды трения
- •2.4.2 Виды изнашивания поверхностей деталей
- •2.5 Понятие о трибологии
- •2.5.1 Основные понятия в химмотологической трибологии
- •3.Эксплуатационные материалы
- •3.1 Жидкие топлива
- •3.1.2 Автомобильные бензины
- •Классификация автомобильных и авиационных бензинов по октановому числу
- •Показатели качеств бензинов России и стран еэс
- •Требования, предъявляемые к бензину
- •3.1.2.2 Теплота сгорания бензиновоздушной смеси (бвс)
- •3.1.2.3 Смесеобразующее свойство бензина
- •3.1.2.4 Влияние конструктивных и эксплуатационных факторов на процесс сгорания бензина
- •3.1.2.5 Нормальное и детонационное сгорание бензина
- •3.1.2.6 Методы повышения антидетонационных свойств бензина
- •Смолообразование и коррозионные свойства бензина
- •3.1.3 Дизельное топливо
- •Рекомендуемые марки топлива в различных климатических зонах
- •Пропорции смеси дизельного топлива с керосином
- •3.1.3.1 Требования, предъявляемые к качеству дизельного топлива
- •Основные показатели качества дизельного топлива
- •Показатели качества летнего дизельного топлива по гост 305-01 и по en590-99
- •3.1.3.2 Эксплуатационные свойства и использование дизельного топлива
- •3.2 Смазочные масла
- •3.2.1 Характеристика смазочных масел
- •Алкановое сырье
- •Нафтеновое сырье
- •3.2.2 Моторные масла
- •Подразделение масел по группам и применению
- •3.2.2.1 Классификация моторных масел по вязкости
- •3.2.2.2 Маркировка моторных масел
- •Марки моторных масел
- •3.2.2.3 Синтетические моторные масла
- •Способы получения
- •Особенности синтетических масел в их применение
- •Основные показатели нефтяного и синтетических масел
- •Импортные моторные масла
- •Классификация моторных масел по качеству
- •Классификация api моторных масел по эксплуатационным свойствам
- •Классификация моторных масел по ссмс
- •Классификация моторных масел по асеа
- •Классификация моторных масел по асеа-98 и api
- •Классификация моторного масла по вязкости
- •Обозначение моторных масел по sae
- •Вязкость моторного масла по sae и гост 17479.1-85
- •Зарубежные аналоги отечественным моторным маслам
- •Допуск автомобильных фирм
- •Зарубежные и отечественные производители масел Фирма "Gilmar"
- •Оао «Нефтяная компания лукойл»
- •Завод ооо Лукойл-Пермнефтеоргсинтез
- •Моторные масла завода Пермнефтеоргсинтез
- •Акционерное общество "Оу Teboil Ab "
- •3.2.2.1 Условия работы и факторы, влияющие на изменение качества моторного масла
- •3.2.2.7 Присадки
- •Ассортимент присадок к маслам
- •3.2.2.9 Пути совершенствования и эффективного использования моторных масел
- •3.4 Трансмиссионные масла
- •3.2.3.1 Классификация трансмиссионных масел
- •Классификация трансмиссионных масел по гост 17479.2-85 и соответствие им масел по гост 23652-79
- •Классификация трансмиссионных масел по вязкости
- •Классы вязкости трансмиссионных масел
- •3.2.3.2 Маркировка трансмиссионных масел
- •Маркировка трансмиссионных масел
- •3.2.3.3 Импортные трансмиссионные масла
- •Классификация трансмиссионных масел по качеству
- •Классификация трансмиссионных масел по системе api, гост 17479.2-85 и соответствие им масел по гост 23652-7
- •Классификация трансмиссионного масла по вязкости
- •3.2.3.4 Масла для гидромеханических передач
- •3.3 Пластичные смазки
- •3.3.1 Классификация пластичных смазок
- •Классификация пластичных смазок по консистенции
- •Основные показатели пластичных смазок
- •3.3.2 Наименование и обозначение смазок
- •3.3.3 Краткая характеристика пластичных смазок
- •3.3.4 Импортные пластичные смазки
- •Классификация пластичных смазок по nlgi
- •Классификация nlgi пластичных смазок
- •Марки пластичных смазок
- •Температурные диапазоны трансмиссионных пластичных смазок по классификации nlg1
- •3.3.6 Методы оценки основных показателей и свойств пластичных смазок
- •3.4 Основы рационального и экономного использования топлива и смазочных материалов
- •Специальные технические жидкости
- •Рабочие жидкости
- •3.5.1.1 Обозначение рабочих жидкостей
- •3.5.1.2 Амортизационные жидкости
- •3.5.1.3 Индустриальные масла
- •Классификация индустриальных масел
- •Классификация по назначению
- •Классификация по вязкости
- •Маркировка индустриальных масел
- •Маркировка и характеристика индустриальных масел по гост 20799-88 и гост 17479.4
- •3.5.1.4 Тормозные жидкости
- •3.5.1.5 Охлаждающие жидкости
- •Свойства охлаждающей жидкости
- •3.5.1.6 Пусковые жидкости
- •Состав пусковых жидкостей, %
- •3.5.1.7 Электролит
- •3.5.1.8 Консервационные материалы
- •Классификация по защитным свойствам
- •3.5.1.9 Пленкообразующие ингибированные нефтяные составы (пинс)
- •3.5.1.10 Жидкости для удаления нагара
- •Импортные специальные технические жидкости
- •Рабочие жидкости
- •Классификация гидравлических масел
- •Классификация гидравлических масел
- •Температура застывания гидравлических масел по классификации iso
- •Индустриальные масла
- •Классификация индустриальных масел
- •Классификация по назначению
- •Классификация по эксплуатационным свойствам
- •Соответствие отечественных индустриальных масел по назначению зарубежным
- •Классификация по вязкости
- •3.6.3 Тормозные жидкости
- •Характеристики тормозных жидкостей
- •3.6.4 Охлаждающие жидкости
- •Характеристика водно-этиленгликолевой охлаждающей жидкости (стандарты iso, astm, din, snv)
- •3.6.5 Консервационные масла и смазки (компаунды)
- •Консервационные смазки (компаунды)
- •Консервационные масла
- •3.6.6 Пленкообразующие ингибированные нефтяные составы (пинс)
- •4.Контроль качества топливно-смазочных материалов
- •4.1 Определение качества бензинов
- •4.2. Определение качества дизельного топлива
- •4.3 Определение качества пластичной смазки
- •4.4 Восстановление качества топливно-смазочных материалов
- •4.5 Оценка качества импортных смазочных материалов
- •4.5.1 Смазочные масла
- •4.5.2 Пластичные смазки
- •Химмотологические карты лесных машин
- •Химмотологическая карта лесопромышленных машин
- •6. Безопасность труда, пожарная безопасность и охрана окружающей среды Общие положения
- •6.1 Безопасность труда
- •6.2 Пожарная безопасность
- •6.3 Охрана окружающей среды
- •Перечень использовавшихся терминов
- •Спецификации на лабораторные методы оценки физико-химических свойств смазочных масел иностранных фирм
- •Заключение
- •Библиографический список
- •Присадки
- •Классификация sae моторных масел по вязкости
- •Аналоги вязкостных классов моторных масел по классификации sae и России
- •Моторные масла
- •Трансмиссионные масла
- •Автомобильные смазки
- •Трансмиссионные смазки
- •Морозостойкие смазки
- •Гидравлические масла
- •Индустриальные масла Машинные масла
- •Машинные масла типа «нон-дрип»
- •Циркуляционные масла
- •Турбинные масла
- •Компрессорные масла
- •Холодильные масла
- •Зарубежные и отечественные производители масел и смазок
- •Консервационные масла
- •Температурная поправка к величине плотности тсм
- •16798, Г. Сыктывкар, ул. Ленина, 39
Способы получения
В настоящее время интерес представляют следующие наиболее исследованные синтетические масла: на основе диэфиров (сложные эфиры двухосновных карбоновых кислот), полиалкиленгликолевые, полисилоксановые, фторуглеродные и хлорфторуглеродные.
Из сложных эфиров, образующихся при взаимодействии двухосновных кислот с одноатомными спиртами или одноосновных кислот с многоатомными спиртами, наибольшее распространение для получения масел получили диэфиры. Основной способ их производства - каталитические процессы этерификации: получение диэфира путем взаимодействия себациновой кислоты C8H16 (COOH)2 (вырабатывают из касторового масла) с изооктиловым спиртом C8H17OH.
Полиалкиленгликоли, получаемые взаимодействием различных гликолей и других спиртов с окисью этилена, окисью пропилена или их смесями, по своей структуре - простые полиэфиры с длинными цепями. Молекула полигликоля может содержать одну или несколько свободных гидроксильных групп, замена которых на алкильную эфирную группу приводит к получению эфиров полигликолей. Различные радикалы, вводимые в молекулу полигликоля, влияют на свойства получаемых продуктов.
Полимерные кремнийорганические соединения (полисилоксаны, силиконы) находят все большее распространение в качестве специальных смазочных масел и жидкостей. В их основе - цепочка из чередующихся атомов кремния и кислорода:
-Si-0-Si-O-Si-
Боковые цепи атомов кремния - это углеводородные и другие органические радикалы различного строения.
Практическое применение в качестве смазочных масел получили полимеры с метильными радикалами - метилполисилоксаны и этильными радикалами – этилполисилоксаны:
CH3 Si – O CH3 n Метилполисилоксан |
C2H5 Si – O C2H5 n Этилполисилоксан
|
|
Фторуглеродные масла получают путем замены в углеводородах всех атомов водорода фтором, а хлорфторуглеводородные масла - путем замены атомов водорода частично хлором, а частично фтором.
Особенности синтетических масел в их применение
Использование синтетических продуктов при производстве моторных масел дает явные преимущества перед нефтяными маслами. В таблице 11 приведены основные показатели нефтяного и синтетических масел, что позволяет оценить их достоинства и недостатки.
Таблица 12
Основные показатели нефтяного и синтетических масел
Показатели |
Нефтяное масло |
Синтетические масла |
|||
ди-эфирные |
поли-алкилен-гликолевые |
поли- силокса- новые |
фтор-углеродные |
||
Вязкость при 100 °С, мм 2/с Индекс вязкости Температура застывания, °С Температура вспышки, °С Температурный предел работоспособности, °С Потери при испарении при 100 °С за 22 ч, % |
2,5
70
-40...-73
149
220
8 |
3,2
140-150
-43...-63
232
220
0.1 |
3,2
135-180
-53...-63
193
260-300
0.1 |
3,5
270
-63...-100
315
250
0,1 |
-
500
-3...-23
-
400-500
0 |
Одно из основных преимуществ синтетических масел - это их значительно более высокий индекс вязкости, чем у нефтяных масел даже лучших сортов. Лучшая вязкостно-температурная характеристика некоторых синтетических масел в зоне отрицательных температур, а также более низкая температура потери подвижности обеспечивают более легкий при их применении пуск двигателей и при более низких температурах.
Меньшая склонность синтетических масел к образованию низкотемпературных отложений способствует нормальной эксплуатации двигателей в районах Севера. В то же время, высокие показатели вязкости при рабочих температурах (вязкость синтетических масел при температурах 250-300 °С) в 3-5 раз выше равновязких им (при 100 °С) минеральных, что обеспечивает условия гидродинамической смазки до более высоких температур и термической стабильности, низкая испаряемость и малая склонность к образованию высокотемпературных отложений дают возможность успешно применять синтетические масла в высокофорсированных теплонапряженных двигателях и при эксплуатации лесных машин в условиях жаркого климата.
Синтетические масла имеют в несколько раз больший срок службы, чем нефтяные, и обеспечивают хорошее состояние двигателя, так как характеризуются лучшими противоокислительными, диспергирующими свойствами и механической стабильностью, равными или лучшими (в зависимости от применяемой синтетической основы) противоизносными и противозадирными свойствами. Большой срок службы синтетических масел до замены и меньший расход на угар на 30-40 % сокращает расход масла. Характерно, что снижается и расход топлива (на 4-5 %), что обусловливается более оптимальными условиями трения при работе двигателя на синтетическом масле.
Для улучшения свойств в синтетические масла возможно введение композиции присадок. Их можно смешивать с минеральными маслами (на синтетическую основу приходится, как правило, 30-40 %). В этом случае свойства масел не нарушаются, обеспечивается повышение их качества, однако стоимость немного возрастает.
Масла, получаемые на основе диэфиров, имеют более высокие индексы вязкости и низкие температуры застывания, меньшую испаряемость и огнеопасность, чем нефтяные масла, и они превосходят их почти по всем важнейшим эксплуатационным свойствам. В то же время диэфирные масла более агрессивны по отношению к изделиям из маслостойкой резины, вызывают набухание и размягчение резиновых прокладок, шлангов и др.
Полиалкиленгликолевые масла, кроме лучших, чем у нефтяных, противоизносных свойств отличаются более пологой вязкостно-температурной характеристикой, более низкой температурой застывания, имеют высокий индекс вязкости, выдерживают высокие температуры до 300 °С, не корродируют металлы, не вызывают, в отличие от эфирных масел, набухания и размягчения натуральной и синтетической резины. Высокая стоимость таких масел пока ограничивает их широкое применение.
Полисилоксаны отличаются низкой температурой застывания, имеют пологую вязкостно-температурную кривую, термостабильны. К тому же они химически инертны, и масла на их основе не вызывают коррозию стали, чугуна, меди, латуни, бронзы, свинца и других металлов даже при нагревании до 150 °С. Основной недостаток полисилоксанов и масел на их основе -плохие смазывающая способность и противоизносные свойства. Введением присадок удается несколько уменьшить этот недостаток. Полисилоксаны в качестве смазочных масел весьма перспективны. Уже сейчас известно их применение в гидросистемах и гидроамортизаторах в качестве рабочих жидкостей, а также для изготовления пластичных смазок и приборных масел.
Фторуглеродные масла, напротив, обладают хорошими смазочными свойствами. Высокие термическая и химическая стабильность, инертность к кислотам и щелочам, минимальная коррозионная агрессивность - все это позволяет использовать их в узлах трения, работающих при высоких температурах в атмосфере химически активных веществ. Однако у фторуглеродных масел низкая температура кипения и высокая температура застывания при очень крутой вязкостно-температурной кривой. Эти недостатки исключают их практическое использование в настоящее время для двигателей лесных машин. Тем не менее, их перспективность обуславливает проведение интенсивных работ по устранению указанных недостатков. Хлорфторуглеводороды характеризуются более высокой температурой кипения, лучшими вязкостно-температурными свойствами и смазывающей способностью, но несколько худшими термической и химической стабильностью.
В среднем стоимость синтетических масел в 2-3 раза выше нефтяных. Тем не менее, они перспективны не только с эксплуатационной точки зрения, но и с экономической, так как обладают, как уже отмечалось, большим сроком службы в двигателях до замены, меньшим расходом на угар.