
- •Предмет и роль органической химии. Теория химического строения органических соединений а.М. Бутлерова и ее значение.
- •Явление изомерии органических соединений, ее типы.
- •Электронные представления в органической химии. Строение атома углерода. Гибридизация орбиталей (валентные состояния атома углерода). Ковалентная связь и ее виды (простая, или δ- и кратные).
- •Классификация органических реакций (по характеру химических превращений и по механизму протекания). Гомолитические (радикальные) и гетеролитические (ионные) реакции.
- •Получение.
- •1. Галогенирование
- •2. Нитрование алканов
- •Строение алкадиенов: а) молекулярное
- •Алкины. Гомологический ряд ацетиленовых углеводородов, общая формула. Изомерия, номенклатура, получение. Строение, химические свойства. Практическое использование ацетилена и винилацетилена.
- •Получение:
- •1) В промышленном масштабе для технических целей ацетилен получают высокотемпературным пиролизом метана.
- •Реакции присоединения:
- •1) Гидрирование. Гидрирование алкинов осуществляется при нагревании с теми же металлическими катализаторами (Ni, Pd или Pt), что и в случае алкенов, но с меньшей скоростью.
- •Спирты. Предельные одноатомные спирты. Классификация, изомерия, номенклатура, получение. Физические и химические свойства.
- •Химические свойства спиртов.
- •Многоатомные спирты. Классификация. Этиленгликоль и глицерин. Получение. Химические свойства, идентификация. Практическое использование.
- •Фенолы. Изомерия и номенклатура. Химические свойства. Химическая идентификация фенола. Практическое использование в синтезе высокомолекулярных органических соединений.
- •Химические свойства
- •1. Реакции с участием гидроксильной группы
- •2. Реакции с участием бензольного кольца
- •Предельные двухосновные карбоновые кислоты. Номенклатура. Химические свойства. Адипиновая и терефталевая кислоты, практическое использование в синтезе полимеров.
- •Номенклатура. Систематические названия двухосновных предельных карбоновых кислот даются по названию соответствующего алкана с добавлением суффикса -диовая и слова кислота.
- •Амины. Классификация. Изомерия, номенклатура. Способы получения. Строение аминов и химические свойства. Практическое использование.
- •Классификация По радикалу:
- •По функциональным группам
- •Имеют структуру типа rch(nh2)co2h.
- •Общие химические свойства
- •Пептид — семейство веществ, молекулы которых построены из остатков α-аминокислот, соединённых в цепь пептидными (амидными) связями —c(o)nh—.
- •Углеводы. Химическая природа. Классификация. Распространение в природе, биологическая роль и практическое значение.
- •Биологическая роль углеводов:
- •Углеводы. Моносахариды (глюкоза, фруктоза). Строение (открытая и циклическая формы). Способы получения. Химическая идентификация (восстанавливающие свойства).
- •Получение углеводов
- •В растениях углеводы образуются из двуокиси углерода и воды в процессе сложной реакции фотосинтеза, осуществляемой за счет солнечной энергии с участием зелёного пигмента растений - хлорофилла.
- •Дисахариды (мальтоза, целлобиоза, сахароза). Строение. Получение. Химические свойства. Химическая идентификация восстанавливающих дисахаридов.
- •Целлобиоза — состоит из двух остатков глюкозы.
- •Способы получения дисахаридов:
- •Химические свойства
- •Отличительные особенности полимерного состояния вещества. Физические свойства полимеров и геометрическая форма макромолекул.
- •Методы синтеза полимеров. Реакция полимеризации, основные закономерности. Реакция поликонденсации, отличительные особенности. Примеры получения полимеризационных и поликонденсационных полимеров.
- •Химические превращения полимеров. Полимераналогичные реакции и их практическое использование.
- •Химические превращения полимеров. Макромолекулярные реакции (межмолекулярные и деструктивные). Деструкция полимеров, ее виды. Стабилизация полимеров и виды стабилизаторов.
- •Волокна. Общая характеристика. Строение макромолекул и свойства. Натуральные волокна (белковые и целлюлозные). Природные источники, химический состав, свойства и применение.
- •Искусственные волокна (ацетатные, вискозное), синтетические волокна (полиамидные, полиэфирные, полиакрилонитрильные, поливинилхлоридные). Свойства и применение.
Получение.
1.Действие металлического натрия на моногалогенпроизводные (Реакция Вюрца) |
C2H5I+CH3I+2Na=C3H8+2NaI |
2. Восстановление непредельных углеводородов |
H3C-
CH=CH2+H2 |
3.Сплавление солей карбоновых кислот со щелочью |
CH3COONa
+ NaOH
|
В молекуле метана химические связи атомов водорода с атомом углерода имеют ковалентный характер. Если перекрывающиеся попарно электронные облака при образовании связей обозначить двумя точками или валентной черточкой, строение метана можно выразить формулами:
или
Алканы имеют низкую химическую активность. Это объясняется тем, что единичные связи C—H и C—C относительно прочны и их сложно разрушить. Поскольку углеродные связи неполярны, а связи С—Н малополярны, оба вида связей малополяризуемы и относятся к σ-виду, их разрыв наиболее вероятен по гомолитическому механизму, то есть с образованием радикалов.
1. Галогенирование
Галогенирование алканов – реакция замещения одного или более атомов водорода в молекуле алкана на галоген. Продукты реакции называют галогеналканами или галогенопроизводными алканов. Реакция алканов с хлором и бромом идет на свету или при нагревании.
Хлорирование метана:
При достаточном количестве хлора реакция продолжается дальше и приводит к образованию смеси продуктов замещения 2-х, 3-х и 4-х атомов водорода:
Реакция галогенирования алканов протекает по радикальному цепному механизму, т.е. как цепь последовательных превращений с участием свободно-радикальных частиц.
2. Нитрование алканов
На алканы действует разбавленная азотная кислота при нагревании и давлении. В результате происходит замещение атома водорода на остаток азотной кислоты – нитpогpуппу NO2. Эту реакцию называют реакцией нитрования, а продукты реакции – нитpосоединениями.
Схема реакции:
При нитровании алканов также соблюдается порядок реакционной способности С-Н-связей, характерный для реакций радикального замещения:
Стрет.– Н > Свтор.– Н > Cперв.– Н
Например:
Окисление органического вещества – введение в его состав кислорода и (или) отщепление водорода. При внесении в открытое пламя алканы горят. При этом в избытке кислорода происходит их полное окисление до СО2, где углерод имеет высшую степень окисления +4, и воды. Горение углеводородов приводит к разрыву всех связей С–С и С–Н и сопровождается выделением большого количества тепла (экзотермическая реакция).
Примеры:
При нагревании алканов в присутствии катализаторов (Pt, Pd, Ni, Fe, Cr2O3, Fe2O3, ZnO) происходит их каталитическое дегидрирование – отщепления атомов водорода за счет разрыва связей С—Н.
Строение продуктов дегидрирования зависит от условий реакции и длины основной цепи в молекуле исходного алкана.
1. Низшие алканы, содержащие в цепи от 2-х до 4-х атомов углерода, при нагревании над Ni-катализатором отщепляют водород от соседних углеродных атомов и превращаются в алкены
2. Алканы, содержащие в основной цепи больше 4-х атомов углерода, используются для получения циклических соединений.
3. При 1500 °С происходит межмолекулярное дегидрирование метана по схеме:
Крекинг – процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью.
Термический крекинг. При температуре 450–700 oС алканы распадаются за счет разрыва связей С–С (более прочные связи С–Н при такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов. Например:
C6H14
C2H6
+ C4H8
Каталитический крекинг проводят в присутствии катализаторов (обычно оксидов алюминия и кремния) при температуре 500°С и атмосферном давлении. При этом наряду с разрывом молекул происходят реакции изомеризации и дегидрирования.
№8.
Алкены. Гомологический ряд, общая формула. Изомерия, номенклатура, получение. Строение. Химические свойства. Правило Марковникова и его электронная трактовка. Реакция полимеризации. Промышленное использование этилена, пропилена и бутилена.
Алкены — ациклические непредельные углеводороды, содержащие одну двойную связь между атомами углерода, образующие гомологический ряд с общей формулой CnH2n.
этен (этилен) |
C2H4 |
пропен |
C3H6 |
бутен |
C4H8 |
пентен |
C5H10 |
гексен |
C6H12 |
гептен |
C7H14 |
октен |
C8H16 |
нонен |
C9H18 |
децен |
C10H20 |
Алкены, число атомов углерода в которых больше двух, (т.е. кроме этилена) имеют изомеры. Для алкенов характерны изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная.
В соответствии с правилами ИЮПАК при построении алкенов наиболее длинная углеродная цепь, содержащая двойную связь, получает название соответствующего алкана, в котором суффикс -ан заменен на -ен. Эта цепь нумеруется таким образом, чтобы углеродные атомы, участвующие в образовании двойной связи, получили номера, наименьшие из возможных.
Физические свойства алкенов похожи на свойства алканов, хотя все они имеют несколько более низкие температуры плавления и кипения, чем соответствующие алканы.
Способы их получения:
1. Крекинг алканов, входящих в состав нефти:
|
|
Крекинг протекает по свободнорадикальному механизму при высоких температурах (400-700 °С).
2. Дегидрирование алканов:
|
t, Cr2O3 |
|
СН3-СН2-СН3 |
→ |
СН3-СН=СН2 + Н2 |
3. В лабораторных условиях алкены получают по реакциям отщепления (элиминирования), при которых от соседних атомов углерода отщепляются два атома или две группы атомов, и образуется дополнительная p-связь.
Все специфические химические свойства алкенов определяются наличием в их молекуле -электронного облака (то есть собственно двойной связью).
Реакции окисления. Алкены окисляются легче, чем алканы. Продукты, образованные при окислении алкенов, и их строение зависят от строения алкенов и от условий проведения этой реакции.
1. Окисление при обычной температуре.
2. Горение алкенов. Как и алканы, непредельные соединения ряда этилена сгорают на воздухе с образованием оксида углерода (IV) и воды.
Реакция изомеризации. При нагревании или в присутствии катализаторов алкены способны изомеризоваться — происходит перемещение двойной связи или установление изостроения.
Реакции полимеризации. За счет разрыва p-связей молекулы алкена могут соединяться друг с другом, образуя длинные цепные молекулы.
Реакции присоединения.
1. Гидрирование (присоединение водорода). Алкены, присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), переходят в предельные углеводороды — алканы.
2. Галогенирование (присоединение галогенов). Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных.
3. Гидрогалогенирование (присоединение галогеноводородов). Алкены легко присоединяют галогенводороды. Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова.
Правило Марковникова относится только к углеводородам (не имеющим никаких заместителей, кроме алкильных радикалов!) и звучит:
Современная электронная трактовка правила Марковникова позволяет объяснить и ряд случаев присоединения против этого правила. Так, присоединение электрофильных и нуклеофильных агентов к соединениям с сопряжёнными связями, содержащим электроотрицательную группировку у атома углерода двойной связи, происходит против правила Марковникова в соответствии со смещением электронной плотности к наиболее электроотрицательным атомам, например:
Этилен используется для производства целого ряда химических соединений: винилхлорида, стирола, этиленгликоля, этиленоксида, этаноламинов, этанола, диоксана, дихлорэтана, уксусного альдегида и уксусной кислоты. Полимеризацией этилена и его прямых производных получают полиэтилен, поливинилацетат, поливинилхлорид, каучуки и смазочные масла.
Пропилен в промышленности применяется, в основном, для синтеза полипропилена. Также из него получают кумол, окись пропилена, акрилонитрил, изопропанол, глицерин, масляный альдегид.
Бутилены применяют для производства бутадиена, изопрена, полиизобутилена, бутилкаучука, метилэтилкетона и пр.
№9.
Алкадиены. Классификация, номенклатура. Строение, особенности образования -связи и особенности химических свойств алкадиенов с сопряженными связями. Получение и практическое использование дивинила и изопрена. Каучуки.
Алкадиены представляют собой ненасыщенные углеводороды, содержащие в своем углеродном скелете две двойные связи.
При составлении названия алкадиена по номенклатуре ИЮПАК главную цепь необходимо выбирать так, чтобы в нее входили обе двойные связи. Нумеровать атомы в цепи нужно таким образом, чтобы атомы углерода, связанные двойными связями, получили минимальные номера. Названия диенов строятся все по тому же принципу, заменяя суффикс –ан в соответствующем алкане на –ен, поскольку, согласно определению, они содержат две двойные связи, то нужно добавить еще ди-, тогда получается –диен.
По принципу расположения двойных связей диены делятся на три группы:
изолированные – двойные связи разделены двумя или более одинарными связями, т.е. между ними есть n(СН2)
сопряженные – двойные связи разделены одной одинарной:
кумулированные – двойные связи находятся при одном и том же атоме углерода.