Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мини методы финансовых расчетов.docx
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
259.25 Кб
Скачать

2.11. Наращение процентов, налоги и инфляция (простые и сложные проценты)

В рассмотренных выше методах определения наращенной суммы не учитывались такие важные моменты, как налоги и инфляция.

Налог на полученные проценты. В ряде стран полученные (юридическими, а иногда и физическими лицами) проценты облагаются налогом, что, естественно, уменьшает реальную наращенную сумму. Нельзя не учитывать и то, что частый пересмотр налоговых правил вносит существенный элемент неопределенности в конечные результаты наращения для владельца денег.

Обозначим, как и выше, наращенную сумму до выплаты налогов (tax-free) через S, а с учетом выплаты как S". Пусть ставка налога на проценты равна g.

При начислении простых процентов находим:

S" = S - (S - P)g - S(1 - g) + Pg = P[1 + n(1 - g)i].

Таким образом, учет налога сводится к соответствующему сокращению процентной ставки: вместо ставки i фактически применяется ставка (1 - g)i.

В долгосрочных операциях при начислении налога на сложные проценты возможны следующие варианты: налог начисляется за весь срок сразу, т.е. на всю сумму процентов, или последовательно, например в конце каждого года. В первом случае сумма налога равна P[(1 + i)n - 1]g, а наращенная сумма после выплаты налога

S" = S - (S - P)g = S(1 - g) + Pg = P[(1 - g)(1 + i)n + g]. (2.38)

Во втором случае сумма налога определяется за каждый истекший год. Очевидно, что она является переменной величиной, так как сумма процентов увеличивается во времени. Соответственно увеличивается и годовая сумма налогов. Сумма налогов за весь срок, очевидно, не зависит от метода начисления.

Налог за год t (обозначим его как Gt) можно найти с помощью следующего рекуррентного выражения:

Gt = Itg = (St - St-1)g = P[(1 + i)t - (1 + i)t-1]g. (2.39)

Пример 2.21. Пусть ставка налога на проценты равна 10%. Процентная ставка — 30% годовых, срок начисления — три года. Первоначальная сумма ссуды — 1000 тыс. руб. Определим наращенную сумму с учетом выплаты налога на проценты.

При начислении простых процентов за весь срок получим: наращенная сумма без уплаты налога S = 1900 тыс. руб., с учетом его выплаты в конце срока S" = 1000(1 + 3 х 0,9 х 0,3) = 1810 тыс. руб., сумма налога 90 тыс. руб.

Начислим теперь сложные проценты. Наращенная сумма без уплаты налога S = 2197 тыс.руб., с учетом его выплаты S'' = 1000[(1 - 0,1)(1 + 0,3)3 + 0,1] = 2077,3 тыс.руб.

Сумма налога равна 119,7 тыс. руб., причем согласно формуле (2.39) за первый год выплачивается 1000(1,31 - 1,30)0,1 = 30 тыс. руб., за второй год — 1000(1,32 - 1,3)0,1 = 39 тыс. руб., за третий год - 1000(1,33 - 1,32)0,1 = 50,7 тыс. руб.

Инфляцию необходимо учитывать по крайней мере в двух случаях: при расчете наращенной суммы денег и при измерении реальной эффективности (доходности) финансовой операции. Остановимся на этих проблемах.

Прежде всего напомним, что изменение покупательной способности денег за некоторый период измеряется с помощью соответствующего индекса Jnc. Пусть Sнаращенная сумма денег, измеренная по номиналу. Эта же сумма, но с учетом ее обесценения составит:

C = S х Jnc.

Индекс покупательной способности денег, как известно, равен обратной величине индекса цен:

Разумеется, указанные индексы должны относиться к одним и тем же временным интервалам.

Под темпом инфляции обычно понимается относительный прирост цен за период; обозначим его как H; измеряется он в процентах. Темп инфляции и индекс цен связаны следующим образом:

Н =100(Jp - 1).

В свою очередь

Например, если темп инфляции равен 130%, то цены за этот период выросли в 2,3 раза.

Среднегодовые темп роста цен (ip ) и темп инфляции (h) находятся на основе величины Jp как:

Поскольку инфляция является цепным процессом (цены в текущем периоде повышаются на ht процентов относительно уровня, сложившегося в предыдущем периоде), то индекс цен за несколько таких периодов равен произведению цепных индексов цен:

(2.40)

Пусть теперь речь идет о будущем. Если h — постоянный ожидаемый (или прогнозируемый) темп инфляции за период, то за n таких периодов получим

(2.41)

Грубой ошибкой, которая, к сожалению, встречается в российской практике (даже в экономических публикациях, претендующих на научность!), является суммирование темпов инфляции для получения обобщающего показателя инфляции за период. Это, кстати, заметно снижает величину получаемого показателя.

Пример 2.22.

а) постоянный темп инфляции на уровне, скажем, 10% в месяц за год приводит к росту цен в размере Jp = 1,112 = 3,1384, таким образом, годовой темп инфляции равен 213,84%, а не 120%;

б) последовательный прирост цен по месяцам составил 25; 20 и 18%.

Индекс цен за три месяца согласно формуле (2.40) равен 1,25 х 1,2 х 1,18 =1,77. Темп инфляции за три месяца составил 77%.

Вернемся к проблеме обесценения денег при их наращении. В общем случае теперь можно записать:

(2.42)

Если наращение производится по простой ставке, имеем:

(2.43)

Как видим, увеличение наращенной суммы с учетом сохранения покупательной способности денег имеет место только тогда, когда 1 + ni > Jp.

Обратимся теперь к наращению по сложным процентам. Подставив в формулу (2.42) значения S и Jp, находим

(2.44)

Величины, на которые умножается Р в формулах (2.43) и (2.44), представляют собой множители наращения с учетом инфляции.

Посмотрим теперь, как влияют ставка процента i и темп инфляции h на величину C. Очевидно, что если среднегодовой темп инфляции равен ставке процентов, то роста реальной суммы не произойдет: наращение будет поглощаться инфляцией и, следовательно, С = Р. Если же h/100 > i, то наблюдается "эрозия" капитала, его реальная сумма будет меньше первоначальной. Только в ситуации, когда h/100 < i происходит реальный рост (рис. 2.8).

Возникает вопрос: при какой процентной ставке наращение будет только компенсировать инфляцию? Если речь идет о простых процентах, то, приравняв множитель наращения с учетом инфляции в формуле (2.43) к единице, находим минимально допустимую (барьерную) ставку:

Для сложных процентов искомую ставку определим на основе формулы (2.44). Получим i* = h. Ставку, превышающую i*, называют положительной ставкой процента.