
- •2.Строение днк. Первичная, вторичная и третичная структуры днк
- •3.Свойства днк (репликация, репарация)
- •4.Генетический код, его свойства (комплементарность, триплетность, вырожденность, специфичность, универсальность, непрерываемость и неперекрываемость)
- •5.Химическая организация гена. Классификация генов и генных мутаций (замена азотистых оснований, сдвиг рамки считывания, инверсия нуклеотидных последовательностей)
- •6.Рнк, его виды и роль в реализации наследственной информации
- •7.Транскрипция, особенности экспрессии генов у про- и эукариот
- •8.Трансляция;
- •10.Первый закон Менделя – закон единообразия первого поколения
- •11.Второй закон Менделя – закон расщепления. Генетические схемы наследования при моногибридном скрещивании и их цитологическое подтверждение;
- •12.Гипотеза «чистоты гамет» и ее цитологическое обоснование
- •13.Анализирующие скрещивание
- •15.Применение законов Менделя в медицине
- •16.Внутригенные взаимодействия между аллелями одного и того же гена: полное, неполное, сверхдоминирование, кодоминирование и межаллельная комплементация (примеры у растений, животных и человека);
- •18.Плейотропия как свойство гена, подтверждающие целостность генотипа. Примеры у растений, животных и человека
- •19.Понятие о летальных и полулетальных аллелях, примеры
- •21.Понятие о кариотипе, аутосомах, половых хромосомах
- •22.Мейоз, кроссинговер и рекомбинация признаков
- •23.Пол, его предопределение (прогамное, сингамное, эпигамное);
- •24.Понятие о полном и неполном сцеплении генов, группах сцепления
- •25.Линейное расположение генов в хромосомах, карты хромосом;
- •26.Основные положения хромосомной теории наследственности
8.Трансляция;
Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех без исключения организмов имеются специальные органеллы — рибосомы. Рибосомы представляют собойрибонуклеопротеидные комплексы, построенные из 2 субъединиц: большой и малой. Функция рибосом заключается в узнавании трёхбуквенных (трехнуклеотидных) кодонов мРНК, сопоставлении им соответствующих антикодонов тРНК, несущих аминокислоты, и присоединении этих аминокислот к растущей белковой цепи. Двигаясь вдоль молекулы мРНК, рибосома синтезирует белок в соответствии с информацией, заложенной в молекуле мРНК.[1]
Для узнавания аминокислот в клетке имеются специальные «адаптеры», молекулы транспортной РНК (тРНК). Эти молекулы, имеющие форму клеверного листа, имеют участок (антикодон), комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энерго-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК. Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтетаз, присоединяющих аминокислоты строго к соответствующим им тРНК (например, кодону GGU будет соответствовать тРНК, содержащая антикодон CCA, а к этой тРНК будет присоединяться только аминокислота глицин).
Механизмы трансляции прокариот и эукариот существенно отличаются, поэтому многие вещества, подавляющие прокариотическую трансляцию, в значительно меньшей степени действуют на трансляцию высших организмов, что позволяет использовать их в медицинской практике как антибактериальные средства безопасные для организма млекопитающих.
Процесс трансляции разделяют на
инициацию — узнавание рибосомой стартового кодона и начало синтеза.
элонгацию — собственно синтез белка.
терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.
9.Гибридологический метод и изменения, внесенные в него Менделем;
Сущность гибридологического метода изучения наследственности состоит в том, что о генотипе организма судят по признакам его потомков, полученных при определенных скрещиваниях. Основы этого метода были заложены работами Г. Менделя. Мендель скрещивал между собой сорта гороха, различающиеся теми или иными признаками (формой и окраской семян, окраской цветков, высотой стебля и др.), а затем следил, как наследуются признаки того и другого родителя их потомками в первом, втором и последующих гибридных поколениях. Проделав эту работу на достаточно большом количестве растений, Г.Мендель смог установить очень важные статистические закономерности количественного соотношения гибридных растений, обладающих признаками того и другого исходного сорта.
Позднее аналогичные исследования были осуществлены очень многими генетиками на различных Менделем на горохе, имеют общебиологическое значение, так как подтверждаются на самых разнообразных объектах.