Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
427.32 Кб
Скачать

25.Неопределенный интеграл. Таблица первообразных.

Неопределенный интеграл

где F - первообразная функции f (на промежутке); C - произвольная постоянная.

Функция F(x) называется первообразной функции f(x), если

Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как

Таким образом, если F - некоторая частная первообразная, то справедливо выражение

где С - произвольная постоянная.

Свойства

 

 

 

 

 

 

 

 

 

 

24.Выпуклость и вогнутость функции. Асимптоты.

Промежутки выпуклости и вогнутости графика функции, а также точки перегиба определяются с помощью второй производной y (x) . На промежутках

выпуклости y (x) < 0, на промежутках вогнутости y (x) >0. Чтобы найти точки перегиба, исследуют точки, в которых либо y (x) = 0, либо y (x) = ∞, либо y (x) не

существует (причем в последних двух случаях y (x) в этих точках определена).

Точками перегиба являются те из найденных точек, при переходе через которые

y (x) изменяет свой знак.

График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале.

График функции y=f(x) называется вогнутым на интервале (a; b), если он расположен выше любой своей касательной на этом интервале.

На рисунке показана кривая, выпуклая на (a; b) и вогнутая на (b; c).

Теорема. Пусть y=f(x) дифференцируема на (a; b). Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ''(x) < 0, то график функции на этом интервале выпуклый, если же f''(x) > 0 – вогнутый. Теорема. Пусть кривая определяется уравнением y = f(x). Если f ''(x0) = 0 или f ''(x0) не существует и при переходе через значение x = x0 производная f ''(x) меняет знак, то точка графика функции с абсциссой x = x0 есть точка перегиба.

Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные. Вертикальной асимптотой графика функции называется вертикальная прямая , если или при каком-

либо из условий: , , . Заметим, что мы при этом не требуем, чтобы точка принадлежала области определения функции , однако она должна быть определена по крайней мере в какой-либо из односторонних окрестностей этой точки: или , где .     

Наклонной асимптотой графика функции при называется прямая , если выполнены два условия: 1) некоторый луч целиком содержится в ; 2) расстояние по вертикали между графиком и прямой стремится к 0 при :

(7.1)

Наклонной асимптотой графика функции при называется прямая , если 1) некоторый луч целиком содержится в ; 2) расстояние по вертикали между графиком и прямой стремится к 0 при :

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]