Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
427.32 Кб
Скачать

17.Теорема Лагранжа

Формула конечных приращений или теорема Лагра́нжа о среднем значении утверждает, что если функция непрерывна на отрезке и дифференцируема в интервале , то найдётся такая точка , что

.

Геометрически это можно переформулировать так: на отрезке найдётся точка, в которой касательная параллельна хорде, проходящей через точки графика, соответствующие концам отрезка.

Механическое истолкование: Пусть  — расстояние точки в момент от начального положения. Тогда есть путь, пройденный с момента до момента , отношение  — средняя скорость за этот промежуток. Значит, если скорость тела определена в любой момент времени , то в некоторый момент она будет равна своему среднему значению на этом участке.

Доказательство

Для функции одной переменной:

Введем функцию . Для нее выполнены условия теоремы Ролля: на концах отрезка ее значения равны . Воспользовавшись упомянутой теоремой, получим, что существует точка , в которой производная функции равна нулю:

что и требовалось доказать.

18.Теорема Коши

Пусть даны две функции и такие, что:

  1. и определены и непрерывны на отрезке ;

  2. производные и конечны на интервале ;

  3. производные и не обращаются в нуль одновременно на интервале

  4. ;

тогда существует , для которой верно:

.

(Если убрать условие 4, то необходимо, например, усилить условие 3: g'(x) не должна обращаться в нуль нигде в интервале .)

Для доказательства введём функцию

Для неё выполнены условия теоремы Ролля: на концах отрезка её значения равны . Воспользовавшись упомянутой теоремой, получим, что существует точка , в которой производная функции равна нулю, а равна как раз необходимому числу.

19.Правило Лапеталя

Условия:

  1. или ;

  2. и дифференцируемы в проколотой окрестности ;

  3. в проколотой окрестности ;

  4. существует ,

тогда существует .

Пределы также могут быть односторонними.

Доказательство

Отношение бесконечно малых: покажем теорему для случая, когда пределы функций равны нулю (то есть неопределённость вида .

Поскольку мы рассматриваем функции и только в правой проколотой полуокрестности точки , мы можем непрерывным образом их доопределить в этой точке: пусть . Возьмём некоторый из рассматриваемой полуокрестности и применим к отрезку теорему Коши. По этой теореме получим:

,

но , поэтому .

Отношение бесконечно больших:-

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]