
- •2.Множество-набор элементов а.
- •Второй замечательный предел:
- •8.Свойства функций непрерывных на отрезке.
- •10.Необходимые и достаточные условия дифференцируемости. Дифференциал
- •11.Производная элементарных функций
- •12.Правила дифференцирования
- •13.Производная сложной и обратной функции. Логарифмическое дифференцирование.
- •14.Производная параметрически заданной функции и производная наявно заданной функции.
- •15.Производные и дифференциалы высших порядков.
- •16.Теорема Ролля
- •17.Теорема Лагранжа
- •18.Теорема Коши
- •19.Правило Лапеталя
- •20.Формула Тейлора
- •21.Условия возрастания и убывания функции.
- •25.Неопределенный интеграл. Таблица первообразных.
- •24.Выпуклость и вогнутость функции. Асимптоты.
- •26.Методы интегрирования.
- •27.Интегрирование рациональных функций
- •28.Интегрирование тригонометрических функций
- •29.Интегрирование иррациональных функций.
- •30.Определенный интеграл
- •31.Формула Ньютона-Лейбница.
- •32.Замена переменной и интегрирование по частям в опр. Интеграле.
- •33.Несобственный интеграл
- •34.Функции нескольких переменных
- •35.Предел функции двух переменных
- •37.Частные производные
- •38.Двойной интеграл
- •39.Экстремумы функции нескольких переменных.
10.Необходимые и достаточные условия дифференцируемости. Дифференциал
Пусть функция y = f(x) определена в некоторой окрестности точки x0.
Функция f(x) называется дифференцируемой в точке х0, если ее приращение представимо в виде
|
Δf = f(x0 + Δx) − f(x0) = A · Δx + o(Δx) , |
|
где A — число, не зависящее от Δх, а o(Δx) — функция более высокого порядка малости чем Δx при Δх → 0 .
Таким образом, приращение дифференцируемой функции является суммой линейной относительно Δx ч асти A · Δx и бесконечно малой более высокого порядка малости чем Δx при Δх → 0.
Линейная часть приращения дифференцируемой функции называется дифференциалом в точке х0 и обозначается символом df(x0), т.е.
|
df(x0) = A · Δx. |
|
Дифференциал постоянной равен нулю: dc = 0, с = const.
Дифференциал суммы дифференцируемых функций равен сумме дифференциалов слагаемых:
d(u+v)=du + dv
Следствие. Если две дифференцируемые функции отличаются постоянным слагаемым, то их дифференциалы равны
d(u+c) = du (c= const).
Дифференциал произведения двух дифференцируемых функций равен произведению первой функции на дифференциал второй плюс произведение второй на дифференциал первой:
d(uv) = udv + vdu.
Следствие. Постоянный множитель можно выносить за знак дифференциала
d(cu) = cdu (с = const).
Дифференциал частного u/v двух дифференцируемых функций и = и(х) и v = v(x) определяется формулой
Необходимое и достаточное условие дифференцируемости Для того, чтобы функция f(x) была дифференцируема в точке x0, необходимо и достаточно, чтобы в этой точке она имела конечную производную.
11.Производная элементарных функций
12.Правила дифференцирования
13.Производная сложной и обратной функции. Логарифмическое дифференцирование.
Цепное правило
(правило
дифференцирования сложной функции)
позволяет вычислить производную
композиции двух и более функций на
основе индивидуальных производных.
Если функция f имеет производную в точке
,
а функция g имеет производную в точке
,
то сложная функция h(x) = g(f(x)) также имеет
производную в точке
.
Пусть даны функции,
определённые в окрестностях на числовой
прямой,
где
и
Пусть
также эти функции дифференцируемы:
Тогда
их композиция также дифференцируема:
и
её производная имеет вид:
Пусть функции y
= f(x) и x
= g(y) взаимно
обратные, определенные на интервалах
и
соответственно.
Если в точке
существует
конечная отличная от нуля производная
функции f(x),
то в точке
существует
конечная производная обратной функции
g(y),
причем
.
В другой записи
.
Можно это правило
переформулировать для любого x
из промежутка
,
тогда получим
.