Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
427.32 Кб
Скачать

10.Необходимые и достаточные условия дифференцируемости. Дифференциал

Пусть функция y = f(x) определена в некоторой окрестности точки x0.

Функция f(x) называется дифференцируемой в точке х0, если ее приращение представимо в виде

 

Δf = f(x0 + Δx) − f(x0) = A · Δx + ox) ,

 

где A — число, не зависящее от Δх, а ox) — функция более высокого порядка малости чем Δx при Δх → 0 .

Таким образом, приращение дифференцируемой функции является суммой линейной относительно Δx ч асти A · Δx и бесконечно малой более высокого порядка малости чем Δx при Δх → 0.

Линейная часть приращения дифференцируемой функции называется дифференциалом в точке х0 и обозначается символом df(x0), т.е.

 

df(x0) = A · Δx.

 

Дифференциал постоянной равен нулю: dc = 0, с = const.

Дифференциал суммы дифференцируемых функций равен сумме дифференциалов слагаемых:

d(u+v)=du + dv

Следствие. Если две дифференцируемые функции отличаются постоянным слагаемым, то их дифференциалы равны

d(u+c) = du (c= const).

Дифференциал произведения двух дифференцируемых функций равен произведению первой функции на дифференциал второй плюс произведение второй на дифференциал первой:

d(uv) = udv + vdu.

Следствие. Постоянный множитель можно выносить за знак дифференциала

d(cu) = cdu (с = const).

Дифференциал частного u/v двух дифференцируемых функций и = и(х) и v = v(x) определяется формулой

Необходимое и достаточное условие дифференцируемости Для того, чтобы функция f(x) была дифференцируема в точке x0, необходимо и достаточно, чтобы в этой точке она имела конечную производную.

11.Производная элементарных функций

12.Правила дифференцирования

13.Производная сложной и обратной функции. Логарифмическое дифференцирование.

Цепное правило (правило дифференцирования сложной функции) позволяет вычислить производную композиции двух и более функций на основе индивидуальных производных. Если функция f имеет производную в точке , а функция g имеет производную в точке , то сложная функция h(x) = g(f(x)) также имеет производную в точке .

Пусть даны функции, определённые в окрестностях на числовой прямой, где и Пусть также эти функции дифференцируемы: Тогда их композиция также дифференцируема: и её производная имеет вид:

Пусть функции y = f(x) и x = g(y) взаимно обратные, определенные на интервалах и соответственно. Если в точке существует конечная отличная от нуля производная функции f(x), то в точке существует конечная производная обратной функции g(y), причем . В другой записи .

Можно это правило переформулировать для любого x из промежутка , тогда получим .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]