
- •2.Множество-набор элементов а.
- •Второй замечательный предел:
- •8.Свойства функций непрерывных на отрезке.
- •10.Необходимые и достаточные условия дифференцируемости. Дифференциал
- •11.Производная элементарных функций
- •12.Правила дифференцирования
- •13.Производная сложной и обратной функции. Логарифмическое дифференцирование.
- •14.Производная параметрически заданной функции и производная наявно заданной функции.
- •15.Производные и дифференциалы высших порядков.
- •16.Теорема Ролля
- •17.Теорема Лагранжа
- •18.Теорема Коши
- •19.Правило Лапеталя
- •20.Формула Тейлора
- •21.Условия возрастания и убывания функции.
- •25.Неопределенный интеграл. Таблица первообразных.
- •24.Выпуклость и вогнутость функции. Асимптоты.
- •26.Методы интегрирования.
- •27.Интегрирование рациональных функций
- •28.Интегрирование тригонометрических функций
- •29.Интегрирование иррациональных функций.
- •30.Определенный интеграл
- •31.Формула Ньютона-Лейбница.
- •32.Замена переменной и интегрирование по частям в опр. Интеграле.
- •33.Несобственный интеграл
- •34.Функции нескольких переменных
- •35.Предел функции двух переменных
- •37.Частные производные
- •38.Двойной интеграл
- •39.Экстремумы функции нескольких переменных.
8.Свойства функций непрерывных на отрезке.
1. Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [a, b] выполняется условие –M f(x) M.
2. Функция, непрерывная на отрезке [a, b], принимает на нем наибольшее и наименьшее значения.
3. Функция, непрерывная на отрезке [a, b], принимает на этом отрезке все значения между двумя произвольными величинами.
4. Если функция f(x) непрерывна в точке х = х0, то существует некоторая окрестность точки х0, в которой функция сохраняет знак.
5. Если функция f(x)- непрерывная на отрезке [a, b] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x) = 0.
6. Функция, непрерывная на отрезке, равномерно непрерывна на нем.
7. Если функция f(x) определена, монотонна и непрерывна на некотором промежутке, то и обратная ей функция х = g(y) тоже однозначна, монотонна и непрерывна.
Точки разрыва. Если функция f (x) не является непрерывной в точке x = a, то говорят, что f (x) имеет разрыв в этой точке.
-Говорят, что функция f (x) имеет точку разрыва первого рода при x = a, если в это точке
Существуют
левосторонний предел
и
правосторонний предел
;Эти
односторонние пределы конечны.
- При этом возможно следующие два случая:
Левосторонний предел и правосторонний предел равны друг другу:
Такая точка называется точкой устранимого разрыва.
Левосторонний
предел и правосторонний предел не равны
друг другу:
Такая
точка называется точкой
конечного разрыва.
Модуль
разности значений односторонних
пределов
называется
скачком
функции.
Функция
f
(x)
имеет точку
разрыва второго рода
при x = a,
если по крайней мере один из односторонних
пределов не существует или равен
бесконечности.
9.Производная- функция, являющаяся результатом применения той или иной операции дифференцирования к исходной функции. Физический смысл производной — скорость изменения величины или процесса.
Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
Процесс вычисления производной называется дифференци́рованием. Обратный процесс — нахождение первообразной — интегрирование.
Если
функция
имеет
конечную производную в точке
то
в окрестности
её
можно приблизить линейной
функцией
Функция
называется
касательной к
в
точке
Число
является
угловым коэффициентом или тангенсом
угла
наклона
касательной прямой.
Функция
является
дифференцируемой в точке
тогда
и только тогда, когда её производная в
этой точке существует и конечна: