
- •2.Множество-набор элементов а.
- •Второй замечательный предел:
- •8.Свойства функций непрерывных на отрезке.
- •10.Необходимые и достаточные условия дифференцируемости. Дифференциал
- •11.Производная элементарных функций
- •12.Правила дифференцирования
- •13.Производная сложной и обратной функции. Логарифмическое дифференцирование.
- •14.Производная параметрически заданной функции и производная наявно заданной функции.
- •15.Производные и дифференциалы высших порядков.
- •16.Теорема Ролля
- •17.Теорема Лагранжа
- •18.Теорема Коши
- •19.Правило Лапеталя
- •20.Формула Тейлора
- •21.Условия возрастания и убывания функции.
- •25.Неопределенный интеграл. Таблица первообразных.
- •24.Выпуклость и вогнутость функции. Асимптоты.
- •26.Методы интегрирования.
- •27.Интегрирование рациональных функций
- •28.Интегрирование тригонометрических функций
- •29.Интегрирование иррациональных функций.
- •30.Определенный интеграл
- •31.Формула Ньютона-Лейбница.
- •32.Замена переменной и интегрирование по частям в опр. Интеграле.
- •33.Несобственный интеграл
- •34.Функции нескольких переменных
- •35.Предел функции двух переменных
- •37.Частные производные
- •38.Двойной интеграл
- •39.Экстремумы функции нескольких переменных.
37.Частные производные
38.Двойной интеграл
39.Экстремумы функции нескольких переменных.
Необходимое условие и достаточное условие.
Максимумом (строгим) функции f (x, y) называется такое значение f(x1, y1) этой функции, которое больше всех ее значений f(x, y), принимаемых данной функцией в точках некоторой окрестности точки О(х1, у1). (Окрестность может быть весьма малой по своим линейным размерам).
Минимумом (строгим) функции f (x, y) называется такое значение f (x2,y2), которое меньше всех ее значений f (x,y), принимаемых данной функцией в точках некоторой окрестности О (х2, у2).
(Необходимый признак экстремума функции нескольких переменных). В точке экстремума функции нескольких переменных каждая ее частная производная первого порядка либо равна нулю, либо не существует.
Д о к а з а т е
л ь с т в о. Пусть u = f (x, y) и f (xo,
yo)
- ее максимум (для минимума рассуждения
аналогичны). Зафиксируем одну из
переменных, например, у, полагая у =
уо,
тогда получим функцию одной переменной
U1 =
f (x, yo),
которая, очевидно, будет иметь максимум
при х = хо.
Отсюда, на основании теории экстремума
одной переменной,
получаем, что
или
не существует.
Пусть теперь
у=уо,
а хо-
фиксируем, тогда
или не существует.
С л е д с т в
и е. В точке
экстремума Мо
(хо,
уо)
дифференцируемой функции f (x, y)
выполнены равенства
Для U = f(x,
y, z) в
точке Мо
(хо ,уо,
zо)
будет выполнено условие
.
З а м е ч а н и е. Точку, в которой частные производные первого порядка либо не существуют, либо равны нулю, называют критической.
Т.е. экстремумы функции нескольких переменных могут достигаться лишь в критических точках.