
- •Что представляет собой предмет «естествознание»?
- •Специфика естественнонаучной и гуманитарной сфер культур. Что общее и что различное между ними? Взаимосвязь культур.
- •Характеристика объектов материального мира.
- •7. Что надо понимать под словом «Универсум»?
- •8. Три подхода к ответу на вопрос о возникновении Вселенной и человека.
- •9. Структура и методы естественнонаучного познания (перечислить). Понятие «метод».
- •10. Всеобщие методы (характеристика).
- •11. Научный метод. Что представляет собой наука методология. Общенаучные методы эмпирического познания: научные наблюдения.
- •12. Общенаучные методы эмпирического познания: эксперимент и измерения.
- •13. Общенаучные методы теоретического познания: абстрагирование, идеализация, мысленный эксперимент.
- •14. Общенаучные методы теоретического познания: индукция и дедукция.
- •15. Общенаучные методы теоретического познания: формализация, язык науки.
- •16. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания: анализ и синтез.
- •17. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания: аналогия и моделирование.
- •18. Аксиоматический метод.
- •19. Что характерно для натурфилософского понимания природы.
- •20. Назовите основные принципы атомистического учения о природе, обоснованным Демокритом.
- •21. Что включает в себя космология Аристотеля?
- •22. Каково значение гелиоцентрической картины мира, созданной н. Коперником.
- •25. Дать характеристику роли Галилея и Ньютона в истории естествознания.
- •26. Осветите роль Роберта Бойля в развитии науки 17го века.
- •27. В чем сущность диалектизации естествознания?
- •29. Почему и как происходило вытеснение натурфилософских представлений из естествознания нового времени?
- •30. Каковы причины крушения механической картины мира?
- •32. Как изменились представления о строении атома? Назовите основные положения современной атомистики.
- •34. Основные достижения естествознания.
- •35. Основные концепции неклассического этапа становления естествознания.
- •36. Основные достижения и концепции античного этапа. Картина мира.
- •37. Основные достижения и этапы развития доклассического естествознания.
- •40. Способствует ли естествознание формированию нравственных норм?
- •41. Какова роль рационального естественно-научного познания в формировании мировоззрения?
- •42. Механическая картина мира.
- •44. Основные особенности механики Ньютона.
- •45. Основные параметры движения механики Галилея-Ньютона.
- •46. Принцип относительности Галилея. Основные постулаты специальной теории относительности. Сравнение ньютоновской и релятивистских механик.
- •47. Основные следствия специальной теории относительности. Пространственно-временной интервал. Закон взаимосвязи массы и энергии. Взгляд на пространство и время в сто.
- •48. Элементы общей теории относительности. Роль сто и ото в развитии естествознания.
- •49. Понятие симметрии. Однородность и изотопность, как свойства пространства и времени.
- •50. Связь симметрии и пространства и времени, законов сохранения. Теорема Нетер.
- •51. Принципы суперпозиции полей; принцип неопределенности, принцип дополнительности Бора.
- •52. Динамические и статистические закономерности в природе. Законы сохранения энергии в макроскопических процессах.
- •53. Основы термодинамики. 1 и 2 начало.
- •54. Принцип возрастания энтропии. Гипотезы возникновения и развития Вселенной. Структура Вселенной.
- •55. История возникновения геологического развития Земли. Структура Земли. Современные концепции развития геосферных оболочек.
- •56. Литосфера как абиотическая основа жизни: экологические функции литосферы: ресурсная, геодинамическая, геофизико-химическая.
- •57. Химические процессы, реакционная способность веществ. Катализ.
- •58. Эволюция на химическом уровне.
- •59. Биологический уровень организации материи. Принципы эволюции, воспроизводства и развития живых систем.
- •61. Структурные уровни организации живой материи.
- •62. Процесс биологического обновления.
- •63. Живой организм – открытая термодинамическая система.
- •64. Поведение энтропии открытой сильнонеравновесной живой системы в стационарном состоянии.
- •65. Источник Негэнтропии.
- •66. Автотрофы и гетеротрофы. Их взаимосвязь.
- •67. Метаболизм.
- •68. Процесс получения энергии в живых организмах. В какой форме и где хранится химическая энергия.
- •69. Исходные соединения для фотосинтеза. Продукты реакции.
- •70. Как извлекается энергия из питательных веществ? На что она идет? Как называются эти процессы? Роль дыхания в этих процессах.
- •71. Глобальный круговорот веществ в биосфере. Биогеохимические циклы.
- •72. Первоисточник энергетического потока, проходящего через все пищевые цепочки в биосфере. Финал преобразования этой энергии.
- •73. Переход от неживой материи к живой.
- •74. Функции, структура и состав молекул днк.
- •75. Структура и состав днк:
- •76. Генетический код.
- •78. Состав клетки. Различия растительной и животной клетки.
- •79. Группы, на которые делятся все организмы в зависимости от типа клеток. Стволовые клетки. Клетка как живой организм.
- •80. Какие физические поля могут существовать в организме?
- •81. Сущность возникновения эмп в организме человека.
- •82. Биопотенциал.
79. Группы, на которые делятся все организмы в зависимости от типа клеток. Стволовые клетки. Клетка как живой организм.
Стволовая клетка – это незрелая клетка, способная к самообновлению и развитию в специализированные клетки организма.
Во взрослом организме стволовые клетки находятся, в основном, в костном мозге и, в очень небольших количествах, во всех органах и тканях.
Они обеспечивают восстановление поврежденных участков органов и тканей. Стволовые клетки, получив от регулирующих систем сигналы о какой-либо "неполадке", по кровяному руслу устремляются к пораженному органу. Они могут восстановить практически любое повреждение, превращаясь на месте в необходимые организму клетки(костные, гладкомышечные, печеночные, сердечной мышцы или даже нервные) и стимулируя внутренние резервы организма к регенерации (восстановлению) органа или ткани.
Хотя клетка и считается простейшей структурной единицей живого существа, сама по себе она представляет очень сложную систему. В клетке происходит обмен веществ, превращение энергии, биосинтез; она обладает способностью к размножению, раздражимостью, т. е. может реагировать на изменение условий среды.
В зависимости от типа клеток все организмы делятся на две группы – прокариот и эукариот. К
прокариотам относятся бактерии, а к эукариотам – все остальные организмы: простейшие, грибы,
растения и животные. Эукариоты могут быть одноклеточными и многоклеточными.
Прокариоты все одноклеточные. В них нет четко очерченного ядра: молекулы ДНК не
окружены ядерной мембраной и не организованы в хромосомы. Их деление происходит без
митоза. Размеры их относительно небольшие.
Клетки эукариот, в отличие от клеток прокариот, содержат митохондрии – специализированные
органеллы, в которых идут процессы окисления. В клетках растений, помимо митохондрий,
содержатся хлоропласты, способные производить фотосинтез, в результате которого из
углекислого газа и воды образуется сахар.
Клетка как живой организм.
Клетка - наименьшая структурно-функциональная единица живого. Клетка - целостная, самовоспроизводящаяся и саморегулирующаяся система, обладающая всеми свойствами живого.
Жизненные свойства клетки:
Обмен веществ
Биосинтез
Распад органических соединений
Рост
Размножение
Возбудимость
80. Какие физические поля могут существовать в организме?
По́ле в физике — одна из форм материи, характеризующая все точки пространства и времени, и поэтому обладающая бесконечным числом степеней свободы.
Физические поля биологических объектов
Вокруг любого биологического объекта в процессе его жизнедеятельности возникает сложная картина физических полей. Их распределение в пространстве и изменение во времени несут важную биологическую информацию, которую можно использовать, в частности, в целях медицинской диагностики.
Прежде всего сформулируем, о каких полях идет речь.
Естественно, что биологический объект, как любое физическое тело, должен быть источником равновесного электромагнитного излучения.
Следует подчеркнуть, что нас интересуют не сами по себе электромагнитные излучения биологических объектов, а возможность переноса по этим каналам информации, связанной с работой внутренних органов. Например, инфракрасное излучение промодулировано физиологическими процессами. которые задают распределение и динамику температуры поверхности тела.
Следующий канал (диапазон волн) - радиотепловое излучение, несущее информацию о температуре и временных ритмах внутренних органов человека.
Низкочастотные электрические поля (с частотами до 1 кГц) связаны, как правило, с электрохимическими (в первую очередь транcмембранными потенциалами, отражающими функционирование различных органов и систем биообъекта (сердца, желудка и др.). К сожалению, низкочастотные электрические поля практически полностью планируются высокопроводящими тканями биообъекта.
На тех же частотах должны наблюдаться и магнитные поля, связанные с токами в проводящих тканях, сопровождающими физиологические процессы. Это, в частности, представляет большой интерес для исследования деятельности мозга. Сейчас работы такого рода, сулящие большие перспективы для медицинской диагностики, стали широко развиваться и мировой пауке.
Если говорить о более высоких частотах, то в оптическом, ближнем инфракрасном и ближнем ультрафиолетовом диапазонах должны наблюдаться сигналы биолюминесценции, обусловленной протекающими и организме биохимическими реакции. Это слабое свечение тоже весьма информативно: оно позволяет контролировать темп биохимических процессов.
Наш организм хорошо прозрачен для акустических волн с частотами до нескольких мегагерц. В связи с этим исключительно интересно изучение собственных акустических сигналов, выходящих из глубины организма. Такие исследования включают прослушивание организма в инфразвуковом диапазоне, дающее важную информацию о механическом функционировании внутренних органов, мышц и т.д.