
- •Как вычислить определитель?
- •Свойства определителей
- •Описание метода
- •Понятие матрицы
- •Как найти обратную матрицу?
- •Решение системы линейных уравнений матричным методом
- •Решение произвольных систем линейных уравнений
- •Метод последовательного исключения неизвестных (метод Гаусса)
- •Переход к другому базису
- •Нахождение опорных решений
- •1. Прямоугольная система координат в пространстве
- •Деление отрезка в заданном отношении. Координаты середины отрезка. Определение площади треугольника по известным координатам его вершин. Площадь многоугольника
- •Свободные, скользящие и фиксированные векторы
- •1. Векторы, действия над векторами.
- •1) Сложение векторов.
- •2) Вычитание векторов.
- •3) Умножение вектора на число.
- •2. Координаты вектора
- •3. Базис системы векторов.
- •Пример.
- •Скалярное произведение векторов
- •Векторное произведение векторов
- •Смешанное произведение векторов
- •Геометрический смысл смешанного произведения
- •Свойства смешанного произведения:
- •Теорема 6. Всякая элементарная функция непрерывна в каждой точке, в которой она определена. Первый замечательный предел
- •Модификации первого замечательного предела
- •Второй замечательный предел
- •*3) Бесконечно малые величины
- •*4) Непрерывные функции Определения
- •Типы разрывов
- •5)Производная, правила и формулы дифференцирования
- •6)Правила дифференцирования
- •11Уравнение касательной и нормали
- •12. Производные высших порядков
- •13. Дифференциалы высших порядков и их неинвариантность
- •Основные дифференциалы
- •14. Теоремы Ролля, Лагранжа, Коши
- •15.Ряды Тейлора,Маклорена
- •16. Правило Лопиталя
- •17. Возрастание и убывание функции на интервале, экстремумы.
- •Необходимые определения.
- •Достаточные признаки возрастания и убывания функции.
- •Достаточные признаки экстремума функции.
- •18. Выпуклость, вогнутость и точки перегиба функции
- •19.Асимптоты
- •2. Нахождение асимптоты
- •2.1 Геометрический смысл асимптоты
- •2.2 Общий метод отыскания асимптоты
- •3.1 Горизонтальная асимптота
- •3.2 Вертикальная асимптота(рис.4)
- •3.3 Наклонная асимптота
- •20. Построение графика квадратичной функции по направлению ветвей, характерным точкам и оси симметрии параболы Примеры:
Понятие матрицы
Основные
понятия и обозначения. Пусть
m и n два произвольных натуральных
числа.Матрицей размера
m на n (записывается так
)называется
совокупность mn вещественных (комплексных)
чисел или элементов другой структуры
(многочлены, функции и т.д.), записанных
в виде прямоугольной таблицы, которая
состоит из m строк и n столбцов и взятая
в круглые или прямоугольные или в двойные
прямые скобки. При этом сами числа
называются элементами
матрицы и
каждому элементу ставится в соответствие
два числа -номер
строки и номер
столбца.
Для
обозначения матрицы используются
прописные латинские буквы, при этом
саму матрицу заключают в круглые или
прямоугольные или в двойные прямые
скобки. Элементы
матрицыобозначают
строчными латинскими буквами, снабженными
двумя индексами:
-
элемент матрицы, расположенный
в i-й строке
и j-м столбце
или коротко элемент в позиции (i,j).
В общем виде матрица размера m на n может
быть записана следующим образом
Приведём некоторые обозначения, которыми будем пользоваться в дальнейшем:
-
множество всех матриц размера m на n;
-
матрица A с
элементами
в
позиции (i,j);
-
матрица размера m на n.
Элементы
,
где i=j,
называются диагональными, а элементы
,
где
-
внедиагональными. Совокупность
диагональных элементов
,
где k
= min (m,n),
называется главной диагональю матрицы.
Матрица, все элементы которой равны нулю, называется нулевой матрицей и обозначается символом O.
Заметим, что для каждого размера существует своя нулевая матрица.
Матрица размера n на n называется квадратной матрицей n-го порядка, т.е. число строк равно числу столбцов.
Квадратная матрица называется диагональной, если все ее внедиагональные элементы равны нулю.
Диагональная матрица, у которой все диагональные элементы равны 1, называется единичной матрицей и обозначается символом I или E.
Матрица
размера
называется
матрицей-строкой или вектор-строкой.
Матрица размера
называется
матрицей столбцом или вектор-столбцом.
Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц.
Матрицы (и соответственно математический раздел - матричная алгебра) имеют важное значение в прикладной математике, так как позволяют записать в достаточно простой форме значительную часть математических моделей объектов и процессов. Термин "матрица" появился в 1850 году. Впервые упоминались матрицы еще в древнем Китае, позднее у арабских математиков.
Матрицей A=Amn порядка m*n называется прямоугольная таблица чисел, содержащая m - строк и n - столбцов.
Элементы матрицы aij, у которых i=j, называются диагональными и образуют главную диагональ.
Для квадратной матрицы (m=n) главную диагональ образуют элементы a11, a22,..., ann .
Равенство матриц.
A=B, если порядки матриц A и B одинаковы и aij=bij (i=1,2,...,m; j=1,2,...,n)
Действия над матрицами.
1. Сложение матриц - поэлементная операция
2. Вычитание матриц - поэлементная операция
3. Произведение матрицы на число - поэлементная операция
4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)
Amk*Bkn=Cmn причем каждый элемент сij матрицы Cmn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B , т.е.
Покажем операцию умножения матриц на примере
5. Возведение в степень
m>1 целое положительное число. А - квадратная матрица (m=n) т.е. актуально только для квадратных матриц
6. Транспонирование матрицы А. Транспонированную матрицу обозначают AT или A'
Строки и столбцы поменялись местами
Пример
Свойства опрераций над матрицами
A+B=B+A
(A+B)+C=A+(B+C)
λ(A+B)=λA+λB
A(B+C)=AB+AC
(A+B)C=AC+BC
λ(AB)=(λA)B=A(λB)
A(BC)=(AB)C
(A')'=A
(λA)'=λ(A)'
(A+B)'=A'+B'
(AB)'=B'A'
Виды матриц
1. Прямоугольные: m и n - произвольные положительные целые числа
2. Квадратные: m=n
3. Матрица строка: m=1. Например, (1 3 5 7 ) - во многих практических задачах такая матрица называется вектором
4. Матрица столбец: n=1. Например
5. Диагональная матрица: m=n и aij=0, если i≠j. Например
6. Единичная матрица: m=n и
7. Нулевая матрица: aij=0, i=1,2,...,m
j=1,2,...,n
8. Треугольная матрица: все элементы ниже главной диагонали равны 0.
Пример.
9. Симметрическая матрица: m=n и aij=aji (т.е. на симметричных относительно главной диагонали местах стоят равные элементы), а следовательно A'=A
Например,
10. Кососимметрическая матрица: m=n и aij=-aji (т.е. на симметричных относительно главной диагонали местах стоят противоположные элементы). Следовательно, на главной диагонали стоят нули (т.к. при i=j имеем aii=-aii)
Пример.
Ясно, A'=-A
11. Эрмитова матрица: m=n и aii=-ãii (ãji - комплексно - сопряженное к aji, т.е. если A=3+2i, то комплексно - сопряженное Ã=3-2i)
Пример
5. Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц.
Пусть
даны две прямоугольные
матрицы
и
размерности
и
соответственно:
Тогда
матрица
размерностью
называется
их произведением:
где:
Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором; в этом случае говорят, что форма матриц согласована. В частности, умножение всегда выполнимо, если оба сомножителя — квадратные матрицы одного и того же порядка.
Следует
заметить, что из существования
произведения
вовсе
не следует существование произведения
Произведение матриц AB состоит из всех возможных комбинаций скалярных произведений строк матрицы A и столбцов матрицы B. Элемент матрицы AB с индексами i, jесть скалярное произведение i-ой строки матрицы A и j-го столбца матрицы B.
Иллюстрация справа демонстрирует вычисление произведения двух матриц A и B, она показывает как каждые пересечения в произведении матриц соответствуют строкам матрицы A и столбцам матрицы B. Размер результирующей матрицы всегда максимально возможный, то есть для каждой строки матрицы A и столбца матрицы B есть всегда соответствующее пересечение в произведении матрицы.
Значения на пересечениях отмеченных кружочками будут:
В общем случае, произведение матриц не является коммутативной операцией. К примеру:
Элемент
произведения
матриц приведённых выше вычисляется
следующим образом
Первая
координата в обозначении матрицы
обозначает строку, вторая координата —
столбец; этот порядок используют как
при индексации, так и при обозначении
размера. Элемент
на
пересечении строки
и
столбца
результирующей
матрицы является скалярным произведением
-й
строки первой матрицы и
-го
столбца второй матрицы. Это объясняет
почему ширина и высота умножаемых матриц
должны совпадать: в противном случае
скалярное произведение не определено.
Сочетательное свойство:
Распределительное свойство:
.
Произведение
матрицы на единичную
матрицу
подходящего
порядка равно самой матрице:
Произведение
матрицы на нулевую
матрицу
подходящей
размерности равно нулевой матрице:
Если
и
— квадратные
матрицы одного
и того же порядка, то произведение матриц
обладает ещё рядом свойств.
Умножение матриц в целом некоммутативно:
Если
,
то матрицы
и
называются
перестановочными или коммутирующими
между собой.
Определитель и след произведения не зависят от порядка умножения матриц:
6.
Обра́тная ма́трица — такая матрица A−1, при умножении на которую, исходная матрица A даёт в результате единичную матрицу E: