Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan1.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.47 Mб
Скачать

Основные дифференциалы

Дифференциал функции обладает свойствами, аналогичными свойствам производной.

  1. Дифференциал постоянной равен нулю: dc = 0, с = const.

  2. Дифференциал суммы дифференцируемых функций равен сумме дифференциалов слагаемых:

d(u+v)=du + dv

Следствие. Если две дифференцируемые функции отличаются постоянным слагаемым, то их дифференциалы равны

d(u+c) = du (c= const).

  1. Дифференциал произведения двух дифференцируемых функций равен произведению первой функции на дифференциал второй плюс произведение второй на дифференциал первой:

d(uv) = udv + vdu.

Следствие. Постоянный множитель можно выносить за знак дифференциала

d(cu) = cdu (с = const).

  1. Дифференциал частного u/v двух дифференцируемых функций и = и(х) и v = v(x) определяется формулой

  1. Свойство независимости вида дифференциала от выбора независимой переменной (инвариантность формы дифференциала): дифференциал функции равен произведению производной на дифференциал аргумента независимого от того, является ли этот аргумент независимой переменной или функцией другой независимой переменной.

14. Теоремы Ролля, Лагранжа, Коши

Теорема Ролля

Пусть функция f: [a, b] → R непрерывна на сегменте [a, b], и имеет конечную или бесконечную производную внутри этого сегмента. Пусть, кроме того, f(a) = f(b). Тогда внутри сегмента [a, b] найдется точка ξ такая, что f'(ξ) = 0.

Теорема Лагранжа

Если функция f: [a, b] → R непрерывна на сегменте [a, b] и имеет конечную или бесконечную производную во внутренних точках этого сегмента, то такое, что f(b) - f(a) = f'(ξ)(b - a).

Теорема Коши

Если каждая из функций f и g непрерывна на [a, b] и имеет конечную или бесконечную производную на ]a, b[ и если, кроме того, производная g'(x) ≠ 0 на ]a, b[, то такое, что справедлива формула

Если дополнительно потребовать, чтобы g(a) ≠ g(b), то условие g'(x) ≠ 0 можно заменить менее жестким:

15.Ряды Тейлора,Маклорена

Если функция f (x) имеет непрерывные производные вплоть до (n+1)-го порядка, то ее можно разложить в степенной ряд по формуле Тейлора:

где Rnостаточный член в форме Лагранжа определяется выражением

Если приведенное разложение сходится в некотором интервале x, т.е. , то оно называется рядом Тейлора, представляющим разложение функции f (x) в точке a. Если a = 0, то такое разложение называется рядом Маклорена:

Разложение некоторых функций в ряд Маклорена

16. Правило Лопиталя

На основе теоремы Коши мы выведем правило, которое даст нам мощный способ вычисления пределов отношений двух бесконечно малых или двух бесконечно больших величин. Сформулируем его сначала для отношения бесконечно малых.

        Теорема 5.5 (Правило Лопиталя)   Пусть функции и непрерывны в некоторой окрестности точки и , то есть и при . Предположим, что при функции и имеют производные и , причём существует предел отношения этих производных:

Тогда предел отношения самих функций и тоже существует и равен тому же числу :

        Доказательство.     Заметим, что из условия следует, что оба односторонних предела также равны :

и

Пусть , . По теореме Коши, применённой к отрезку , получим тогда, с учётом того, что ,

где . Перейдём теперь в этом равенстве к пределу при :

так как, очевидно, при имеем также . Теперь возьмём точку , и применим теорему Коши к отрезку . Получим

где . Переходя к пределу при , получаем

так как при имеем .

Итак, оба односторонних предела отношения равны . На основании теоремы о связи односторонних пределов с двусторонним получаем, что

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]