Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan1.doc
Скачиваний:
0
Добавлен:
22.12.2019
Размер:
2.47 Mб
Скачать

3. Базис системы векторов.

 Определение. Под системой векторов понимают несколько векторов, принадлежащих одному и тому же пространству R.

Замечание. Если система состоит из конечного числа векторов, то их обозначают одной и той же буквой с разными индексами.

Пример.

Определение. Любой вектор вида   =  называется линейной комбинацией векторов  . Числа   -коэффициентами линейной комбинации.

Пример.  .

Определение. Если вектор    является линейной комбинацией векторов  , то говорят, что вектор   линейно выражается через векторы  .

Определение. Система векторов называется линейно-независимой, если ни один вектор системы не может быть как линейная комбинация остальных векторов. В противном случае систему называют линейно-зависимой.

Пример. Система векторов   линейно-зависима, т. к. вектор  .

Определение базиса. Система векторов образует базис, если:

1) она линейно-независима,

2) любой вектор пространства через нее линейно выражается.

Пример 1. Базис пространства  .

 2. В системе векторов    базисом являются векторы:  , т.к.  линейно выражается через векторы  .

Замечание. Чтобы найти базис данной системы векторов необходимо:

1)     записать координаты векторов в матрицу,

2)    с помощью элементарных преобразований привести матрицу к треугольному виду,

3)     ненулевые строки матрицы будут являться базисом системы,

4)    количество векторов в базисе равно рангу матрицы. 

3.

Два вектора называются коллинеарными, если они лежат на одной и той же прямой или на параллельных прямых

Нуль-вектор считается коллинеарным любому вектору.

Условие коллинеарности двух векторов. Для того чтобы векторы a и b, заданные координатами, были коллинеарны, необходимо и достаточно, чтобы их координаты были пропорциональны. Т.е. существует такое действительное число λ, что

x1 = λ x2,

y1 = λ y2,

z1 = λ z2

Условие перпендикулярности двух векторов. Для того чтобы векторы a и b были перпендикулярны, необходимо и достаточно, чтобы их склярное произведение было равно нулю.

4.

Скалярное произведение векторов

Скалярным произведением двух векторов называется число, равное произведению модулей этих векторов на косинус угла между ними.

Скалярное произведение векторов   обозначается символом   (порядок записи сомножителей безразличен, то есть  ).

Если угол между векторами  ,   обозначить через  , то их скалярное произведение можно выразить формулой

 (1)

Скалярное произведение векторов  ,   можно выразить также формулой

, или  .

Из формулы (1) следует, что  , если   - острый угол,  , если   - тупой угол;   в том и только в том случае, когда векторы   и   перпендикулярны (в частности,  , если   или  ).

Скалярное произведение   называется скалярным квадратом вектора и обозначается символом  . Из формулы (1) следует, что скалярный квадрат вектора равен квадрату его модуля:

.

Если векторы   и   заданы своими координатами:

,

то их скалярное произведение может быть вычислено по формуле

.

Отсюда следует необходимое и достаточное условие перпендикулярности двух векторов

.

Угол   между векторами

,  ,

дается формулой  , или в координатах

.

Проекция произвольного вектора   на какую-нибудь ось u определяется формулой

,

где   - единичный вектор, направленный по оси u. Если даны углы  , которые оси u составляет с координатными осями, то   и для вычисления вектора   может служить формула

.

5.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]