
- •1Определение операционной системы (ос). Назначение и основные функции ос.
- •Эволюция ос.
- •Классификация операционных систем.
- •Структура ос Windows. Краткий обзор архитектуры Windows.
- •Основные системные файлы Windows 95, nt, 2000.
- •Виртуальная память. Страничная организация памяти.
- •Страничная или сегментно-страничная организация памяти.
- •Алгоритмы замещения страниц виртуальной памяти. Алгоритмы замещения страниц
- •7.1.1 Алгоритм nru (Not Recently Used - не использовавшаяся в последнее время страница)
- •Адресное пространство процесса Win32 в Windows nt(2000). Регионы в адресном пространстве. Передача физической памяти региону. Гранулярность выделения ресурсов.
- •Раздел 4. В него загружаются ядро Windows nt и драйверы устройств. Этот раздел защищен и по чтению, и по записи. Регионы в адресном пространстве.
- •Передача физической памяти региону.
- •Механизм выделения страниц физической памяти.
- •Выделение физической памяти под программный код.
- •Атрибуты защиты страниц памяти в Win32. Изменение атрибутов защиты. Атрибуты защиты страниц.
- •Стек потока под управлением Windows nt (2000).
- •Стек потока под Windows 95, 98.
- •Функции компилятора для контроля стека.
- •Кучи в Windows nt (2000). Структура кучи в Win32. Функции управления кучей Win32. Кучи (Heaps).
- •Особенности кучи в Windows 95, Windows nt.
- •Структура арены.
- •Функции управления кучей Win32.
- •Удаление кучи.
- •Выделение блока памяти в определённой куче.
- •Куча, предоставляемая процессу по умолчанию, и дополнительные кучи. Назначение дополнительных куч Win32.
- •Дополнительные кучи Win32 процесса.
- •Создание дополнительных куч для эффективного управления памятью.
- •Локальный доступ. Создание дополнительных куч для локализации доступа.
- •Файлы, проецируемые в память. Файлы проецируемые в память (фпвп).
- •Проецирование в память exe и dll файлов.
- •Совместное использование статических данных несколькими экземплярами exe и dll модулей.
- •Иерархия функций работы с памятью.
- •Объекты ядра. Процессы, потоки и модули в Win32. Объекты kernel32.Dll.
- •Структура imte.
- •Структура modref.
- •Процессы Win32. Идентификатор процесса и дескриптор процесса. Объект ядра процесс в Win32. Функции для работы с процессами Таблица дескрипторов процесса.
- •Потоки. Состояния потоков. Свойства потоков. Объект ядра поток. Функции для работы с потоками.
- •Основные функции для работы с потоками.
- •Структура оя «поток».
- •Распределение времени между потоками. Классы приоритета. Уровни приоритета. Относительный уровень приоритета потока. Функции для работы с приоритетами потоков.
- •Уровни приоритета.
- •Функции Win32 связанные с планированием.
- •Учет квантов времени в Windows. Управление величиной кванта. Учёт квантов времени.
- •Сценарии планирования процессорного времени. Сценарий планирования.
- •Поток простоя.
- •Динамическое повышение приоритета. Динамическое повышение приоритета потока.
- •Синхронизация процессов и потоков. Объекты синхронизации. Синхронизация потоков без использования объектов синхронизации Синхронизация.
- •Синхронизация потоков без использования объектов синхронизации.
- •Синхронизация потоков.
- •Критические секции (кс). Критические секции.
- •Работа потока с несколькими критическими секциями.
- •Синхронизация потоков с объектами ядра. Ожидание завершения потока или процесса. Ожидание завершения нескольких потоков или процессов. Синхронизация объектов.
- •События со сбросом вручную.
- •События с автоматическим сбросом.
- •Объекты Мutex.
- •Синхронизация потоков с помощью семафоров.
- •Синхронизация потоков с помощью событий. События со сбросом вручную и с автоматическим сбросом.
- •События со сбросом вручную.
- •События с автоматическим сбросом.
- •Динамически подключаемые библиотеки (dll). Явная и неявная загрузка dll.
- •Обработка сообщения в ос Window. Структура threadinfo.
- •Посылка асинхронных сообщений в очередь потока
- •Системная очередь аппаратного ввода сообщений.
- •Работа с окнами в ос Windows. Классы окон. Z-порядок окон. Описание окон в ос Windows. Структуры управления окнами.
- •Существующие форматы исполняемых файлов. Формат pe-файла. Заголовок pe-файла. Основные секции pe-файла. Формат pe-файла.
- •Особенности ре-формата.
- •Заголовок ре-файла.
- •Основные секции исполняемого pe-файла.
- •Секция программного кода, импорт и экспорт в pe-файлах. Ресурсы pe-файла. Базовые поправки pe-файла. Импорт в pe-файлах.
- •Экспорт в pe-файлах
- •Ресурсы ре-файла.
- •Базовые поправки ре-файла.
- •Методы отслеживания изменений файловой системы.
- •Файловая система fat. Структура системной области и области данных в fat.
- •Назначение ntfs. Основные особенности и возможности ntfs. Структура файловой системы ntfs. Понятие тома и файла в ntfs.
- •Особенности ntfs.
- •Возможности ntfs.
- •Структура файловой системы ntfs.
- •Тома в ntfs.
- •Кластеры в ntfs.
- •Основные файлы ntfs, назначение основных файлов ntfs. Главная таблица файлов.
- •Назначение основных файлов ntfs.
- •Генерация имен файлов ms dos в ntfs.
- •Структура главной файловой таблицы (mft). Атрибуты файла ntfs. Заголовок атрибута, значение атрибута. Резидентные и нерезидентные атрибуты. Структура главной файловой таблицы (mft).
- •Структура файловых ссылок.
- •Атрибуты файла ntfs
- •Резидентные атрибуты.
- •Нерезидентные атрибуты.
- •Записи главной файловой таблицы ntfs (mft) для резидентных атрибутов и для нерезидентных атрибутов. Виртуальные и логические номера кластеров.
- •Структура больших файлов и каталогов в ntfs. Индексация файлов в ntfs. Структура каталогов в ntfs
- •Структура больших файлов в ntfs
- •Индексация файлов в ntfs.
- •Битовая карта.
- •Восстанавливаемость ntfs. Протоколирование транзакций. Журнал транзакций. Восстанавливаемость ntfs.
- •Протоколирование транзакций.
- •Журнал транзакций.
- •Записи модификации, записи контрольной точки, таблица транзакций, таблица измененных страниц в журнале транзакций. Записи модификации.
- •Записи контрольной точки.
- •Восстановление данных в ntfs. Проход анализа. Проход повтора. Проход отмены. Восстановление данных в ntfs.
- •Проход анализа.
- •Проход повтора.
- •Проход отмены.
- •Замена плохих секторов в ntfs. Файл плохих кластеров. Переназначение плохих кластеров.
- •Переназначение плохих кластеров.
- •Компрессия данных в фс ntfs.
- •Сжатие разрежённых файлов.
- •Сжатие обычных файлов.
- •Система шифрования данных (efs) в файловой системе ntfs .
- •Загрузка ос Windows 2000.
- •Предварительная загрузка.
- •Загрузка.
- •Загрузка ядра.
- •Инициализация ядра
- •Регистрация
- •Процесс разработки программы на ассемблере.
- •Трансляция программы
- •Компоновка программы
- •Основные регистры процессора Pentium.
- •Ассемблерные команды пересылки данных. Пример программы.
- •Работа с адресами и указателями на ассемблере. Пример программы.
- •Ассемблерные команды для работы со стеком. Пример программы.
- •Ассемблерные команды сложения и вычитания. Пример программы.
- •Ассемблерные команды умножения, деления и изменения знака. Пример программы.
- •Использование в Delphi встроенного ассемблера. Пример программы.
- •Ассемблерные команды линейного и циклического сдвига. Пример программы.
- •Ассемблерные команды условного и безусловного перехода. Состояние флагов. Пример программы.
- •Перечень команд условного перехода для команды cmp
- •Организация циклических программ на ассемблере. Пример программы.
Посылка асинхронных сообщений в очередь потока
Когда с потоком связывается структура THREADINFO, он получает свой набор очередей сообщений. Если процесс создает три потока и все они вызывают функцию Create Window, то и наборов очередей сообщений будет тоже три Сообщения ставятся в очередь асинхронных сообщений вызовом функции PostMessage:
BOOL PostMessage( HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam);
При вызове этой функции система определяет, каким потоком создано окно, иден тифицируемое параметром hwnd, Далее система выделяет блок пямяти, сохраняет в нем параметры сообщения и записывает этот блок в очередь асинхронных сообще ний данного потока. Кроме того, функция устанавливает флаг пробуждения QS_POST MESSAGE (о нем — чуть позже). Возврат из PostMessage происходит сразу после того, как сообщение поставлено в очередь, поэтому вызывающий поток остается в неведе нии, обработано ли оно процедурой соответствующего окна На самом деле вполне вероятно, что окно даже не получит это сообщение Такое возможно, если поток, создавший это окно, завершится до того, как обработает все сообщения из своей очереди.
Системная очередь аппаратного ввода сообщений.
При запуске система создает себе особый поток необработанного ввода (raw input thread, RIT) и системную очередь аппаратного ввода (system hardware input queue, SHIQ). RIT и SHIQ — это фундамент, на котором построена вся модель аппаратного ввода.
Обычно RIT бездействует, ожидая появления какого-нибудь элемента в SHIQ Когда пользователь нажимает и отпускает клавишу на клавиатуре или кнопку мыши, либо перемещает мышь, соответствующий драйвер устройства добавляет аппаратное событие в SHIQ Тогда RIT пробуждается, извлекает этот элемент из SHIQ, преобразует его в сообщение (WM_KEY*, WM_?BUTTON* или WM_MOUSEMOVE) и ставит в конец очереди виртуального ввода (virtualized input queue, VIQ) нужного потока. Далее RIT воз вращается в начало цикла и ждет появления следующего элемента в SHIQ RIT никогда не перестает реагировать на события аппаратного ввода — весь его код написан самой Microsoft и очень тщательно протестирован.
Как же RIT узнает, в чью очередь надо пересылать сообщения аппаратного ввода? Ну, с сообщениями от мыши все ясно: RIT просто выясняет, в каком окне находится ее курсор, и, вызвав GetWindowThreadProcessId, определяет поток, создавший это окно. Поток с данным идентификатором и получит сообщение от мыши.
В случае сообщений от клавиатуры все происходит несколько иначе. В любой момент с RIT "связан" лишь какой-то один поток, называемый активным (foreground thrcad). Именно сму принадлежит окно, с которым работает пользователь в данное время.
Когда пользователь входит в систему, процесс Windows Explorer порождает поток, который создает панель задач и рабочий стол. Этот поток привязывается к RIT. Если Вы запустите Calculator, то его поток, создавший окно, немедленно подключится к RIT После этого поток, принадлежащий Explorer, отключается от RIT, так как единовременно с RIT может быть связан только один поток. При нажатии клавиши в SHIQ появится соответствующий элемент. Это приведет к тому, что RIT пробудится, преобразует событие аппаратного ввода в сообщение от клавиатуры и поместит его в VIQ потока Calculator.
Каким образом различные потоки подключаются к RIT? Если при создании про цесса его поток создает окно, последнее автоматически появляется на переднем пла не (становится активным), и этот поток присоединяется к RIT. Кроме того, RIT отве чает за обработку особых комбинаций клавиш- Alt+Tab, AIr+Esc и Ctrl+Alt+Del. Поскольку эти комбинации клавиш RIT обрабатывает самостоятельно, пользователи могут в любой момент активизировать соответствующие окна с клавиатуры; ни одно приложение не в состоянии перехватить упомянутые комбинации клавиш Как только пользователь нажимает одну из таких комбинаций клавиш, RIT активизирует выбранное окно, и в результате его поток подключается к RIT. Кстати, в Windows есть функции, позволяющие программно активизировать окно, присоединив его поток к ШТ. Мы обсудим их несколько позже.
Посылая сообщение в окно B1 или B2, RIT помещает его в очередь виртуального ввода потока В. Обрабатывая это сообщение, поток — при синхронизации на каком-либо объекте ядра — может войти в бесконечный цикл или попасть в ситуацию взаимной блокировки. Если так и случится, он все равно останется присоединенным к RIT, и сообщения будут поступать именно в его очередь виртуального ввода
Однако пользователь, заметив, что ни окно B1, ни окно B2 не реагируют на его действия, может переключиться, например, в окно А1 нажатием клавиш Alt+Tab Поскольку RIT сам обрабатывает комбинацию клавиш Alt+Tab, переключение пройдет без всяких проблем. После активизации окна A1 к RIT будет подключен поток А. Теперь пользователь может спокойно работать с окном A1, даже несмотря на то что поток В и оба его окна зависли.