
- •Билет 3 Понятие предела Геометрический смысл предела
- •Билет4 Бесконечно малая и бесконечно большая
- •Бесконечно большая величина
- •Свойства бесконечно малых
- •Сравнение бесконечно малых Определения
- •Примеры сравнения
- •Понятие о непрерывности функции.
- •Максимум и минимум функции.
- •Билет 15
- •Правила дифференцирования
- •Дифференцирование сложной и обратной функций
- •2. Нахождение асимптоты
- •Тейлора формула
- •Доказательство Отношение бесконечно малых
- •Отношение бесконечно больших
- •Примеры
Тейлора формула
Тейлора формула, формула
изображающая функцию f (x), имеющую n-ю производную f (n)(a) в точке х = а, в виде суммы многочлена степениn, расположенного по степеням х—а, и остаточного члена Rn (x), являющегося в окрестности точки а бесконечно малой более высокого порядка, чем (x—a) n [то есть Rn (x) = an (x)(x—a) n, где an (x) ® 0 при х ® а]. Если в интервале между а и х существует (n + 1)-я производная, то Rn (x)можно представить в видах:
,
где x и x1 — какие-то точки указанного интервала (остаточный член Т. ф. в формах Лагранжа и соответственно Коши). График многочлена, входящего в Т. ф.. имеет в точке а соприкосновение не ниже n-го порядка с графиком функции f (x). Т. ф. применяют для исследования функций и для приближённых вычислений.
Билет 20 Правило Лопита́ля
Правило
Бернулли[1]-Лопита́ля —
метод нахождения пределов
функций, раскрывающий
неопределённости вида
и
.
Обосновывающая метод теорема утверждает,
что при некоторых условиях предел
отношения функций равен
пределу отношения их производных.
Точная формулировка
Условия:
или
;
и
дифференцируемы в проколотой окрестности
;
в проколотой окрестности ;
существует
,
тогда
существует
.
Пределы также могут быть односторонними.
Доказательство Отношение бесконечно малых
Докажем
теорему для случая, когда пределы функций
равны нулю (то есть неопределённость
вида
).
Поскольку
мы рассматриваем функции
и
только
в правой проколотой полуокрестности
точки
,
мы можем непрерывным
образом их
доопределить в этой точке: пусть
.
Возьмём некоторый
из
рассматриваемой полуокрестности и
применим к отрезку
теорему
Коши.
По этой теореме получим:
,
но
,
поэтому
.
Дальше,
записав определение предела отношения производных и
обозначив последний через
,
из полученного равенства выводим:
для
конечного предела и
для
бесконечного,
что является определением предела отношения функций.
Отношение бесконечно больших
Докажем
теорему для неопределённостей вида
.
Пусть,
для начала, предел отношения производных
конечен и равен
.
Тогда, при стремлении
к
справа,
это отношение можно записать как
,
где
— O(1).
Запишем это условие:
.
Зафиксируем
из
отрезка
и
применим теорему
Коши ко
всем
из
отрезка
:
,
что можно привести к следующему виду:
.
Для
,
достаточно близких к
,
выражение имеет смысл; предел первого
множителя правой части равен единице
(так как
и
— константы,
а
и
стремятся
к бесконечности). Значит, этот множитель
равен
,
где
—
бесконечно малая функция при
стремлении
к
справа.
Выпишем определение этого факта,
используя то же значение
,
что и в определении для
:
.
Получили,
что отношение функций представимо в
виде
,
и
.
По любому данному
можно
найти такое
,
чтобы модуль разности отношения функций
и
был
меньше
,
значит, предел отношения функций
действительно равен
.
Если же предел бесконечен (допустим, он равен плюс бесконечности), то
.
В
определении
будем
брать
;
первый множитель правой части будет
больше 1/2 при
,
достаточно близких к
,
а тогда
.
Для других баз доказательства аналогичны приведённым.