
- •1.Способы задания множеств.
- •2. Операции над множествами.
- •3.Законы алгебры множеств
- •4.Круги Эйлера и диаграммы Венна.
- •5.Уравнения с множествами.
- •6. Функции и отображения.
- •7.Типы отображений.
- •8.Операции над отображениями.
- •9.Подстановки
- •10.Способы представления отношений:
- •11.Опреации над отношениями
- •12.Свойства отношений:
- •13.Отношение эквивалентности
- •14.Отношение порядка.
- •15.Отношение толерантности.
- •16.Выборки элементов. Правило суммы и произведения.
- •17.Перестановки:
- •18.Сочетания.
- •19.Разбиения.
- •20.Бином Ньютона.
- •21.Полиномиальные производящие функции:
- •22.Экспоненциальные производящие функции.
- •23.Метод включений и исключений.
- •24.Рекурретное соотношение.
- •25.Основные понятия и определения теории графов.
- •26.Способы задания графов.
- •Геометрический
- •Список инцидентности
- •27.Определение связности графа методом поиска в глубину.
- •28.Определение связности графа методом поиска в ширину.
- •29. Метод построения дерева путей.
- •30.Определение кратчайших путей в графе методом Форда-Белмана
- •31.Определение кратчайших путей в графе методом Дейкстры.
- •32.Классификация методов кодирования.
- •1.Алфавитное кодирование.
- •2.Кодирование с минимальной избыточностью.
- •3.Помехоустойчивое кодирование.
- •4.Сжатие данных.
- •5.Шифрование.
- •33.Кодовое расстояние.
1.Способы задания множеств.
Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.
Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.
Если элемент x принадлежит множеству X, то записывают x ∈ Х (∈ — принадлежит). Если множество А является частью множества В, то записывают А ⊂ В (⊂ — содержится).
Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.
Например, перечислением заданы следующие множества:
А={1,2,3,5,7} — множество чисел
Х={x1,x2,...,xn} — множество некоторых элементов x1,x2,...,xn
N={1,2,...,n} — множество натуральных чисел
Z={0,±1,±2,...,±n} — множество целых чисел
Q – множество рациональных чисел
R - Множество всех вещественных чисел
Множество (-∞;+∞) называется числовой прямой, а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а.
Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным. Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.
Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø.
2. Операции над множествами.
Два множества А и В равны (А=В), если они состоят из одних и тех же элементов. Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.
Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств. Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}
Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В. Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}
Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В. Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}
Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА). Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}
3.Законы алгебры множеств
1. Коммутативность объединения
|
1’. Коммутативность пересечения
|
2. Ассоциативность объединения
|
2’. Ассоциативность пересечения
|
3. Дистрибутивность объединения относительно пересечения
|
3’. Дистрибутивность пересечения относительно объединения
|
4. Законы действия с пустым и универсальным множествами
|
4’. Законы действия с пустым и универсальным множествами
|
5. Закон идемпотентности объединения
|
5’. Закон идемпотентности пересечения |
6. Закон де Моргана
|
6’. Закон де Моргана
|
7. Закон поглощения
|
7’. Закон поглощения
|
8. Закон склеивания
|
8’. Закон склеивания
|
9. Закон Порецкого
|
9’. Закон Порецкого
|
10. Закон двойного дополнения
|