
- •1.Понятие и практическое значение эконометрики
- •2.Связь эконометрики с другими областями научного знания
- •3.Структура дисциплины эконометрика
- •4.Моделирование парных связей: понятие, принципы, последовательность операций
- •5.Парная регрессия в условиях линейной связи, порядок расчетов и интерпретация параметров.
- •6.Парная корреляция в условиях линейной связи, порядок расчетов и интерпретация параметров.
- •7. Методы оценки кач-ва (сюда входит 8,9,10 вопросы)
- •10.Оценка стат.Значимости параметров эконометрич.Модели на основе кр.Стьюдента
- •11. Точечный и интервальный прогнозы на основе модели парной линейной регрессии
- •13. Коэф.Эластичности при парной линейной связи.
- •14. Последовательные этапы построения модели множественной регрессии
- •17. Натуральная и стандартизированная формы модели множественной регрессии
- •19. Показатели силы связи в модели множественной регресии в абсолютной и относительной форме
- •20. Коэффициент множественной корреляции и детерминации
- •21. Коэффициенты частной корреляции, техника их расчета в двухфакторной модели
- •22. Оценка Значимости Уравнения Множественной Регрессии
- •25. Понятие и виды систем эконометрических уравнений.
- •26. Идентификация системы одновременных эконометрических ур-ний.
- •27. Структурная и приведённая формы системы одновременных ур-ний.
- •28. Оценивание параметров системы одновременных уравнений косвенным методом наименьших квадратов.(кмнк)
- •29. Пошаговый метод наименьших квадратов
- •30.Понятие временного ряда.
- •Автокорреляция уровней временного ряда и методы ее оценки (лекц)
- •Коэффициент автокорреляции уравнений первого порядка, второго порядка (лекц)
- •Автокорреляционная функция и коррелограмма (лекц)
- •Порядок расчета и интерпретация параметров линейного уравнения тренда
- •36. Прогнозирование на основе модели тренда
- •37.Модели тренда на основе нелинейных функций
- •38. Аддитивная модель сезонной компоненты временного ряда
- •39.Методы выравнивания временного ряда с периодической (сезонной) компонентой
- •40. Мультипликативная модель сезонной компоненты временного ряда
- •41. Коэффициенты сезонности (исходные, средние, средние скорректированные)
- •42. Критерий Дарбина –Уотсона
40. Мультипликативная модель сезонной компоненты временного ряда
Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Мультипликативная модель оценивает периодическую компоненту в относительных формах
Ŷt= Ŷt /ŝt*K ŝt*Et
Для построения мультипликативной модели временного ряда необходимо выполнить тот же комплекс операций, который предусмотрен для аддитивной модели, меняется только порядок действий и техника выполнения параметров
T |
yt |
Yt/st |
Kst |
Ḱ(с крышечкой)st |
Ḱst скорр |
Yt/Ḱst= Yt/ Ḱst скорр |
Ŷt/ Kst |
Ŷt |
E |
1 |
2 |
3 |
4 |
5 |
6 |
7=2/6 |
8 |
9 |
10 |
1,2,3.. |
|
|
|
|
|
|
По уравнениям Ŷ1/ Kst Ŷ2/ Kst |
|
|
Kst=yt/(yt/st)
Ḱ, считаем, как и в аддитивной модели Ŝt, т.е. суммируем все Kst( по кварталам, если данные по кварталам и по месяцам, если данные по месяцам).
Соответственно, в сумме они должны дать либо 4 либо 12 ( в зависимости от типа данных – кварталы или месяцы), но мы так не получим, а, следовательно, необходимо скорректировать – определяем поправочный коэффициент Z
Z=4/∑ Ḱ или 12/∑ Ḱ
Затем считаем скорректированный Ḱскорр= Ḱ*Z
41. Коэффициенты сезонности (исходные, средние, средние скорректированные)
К основным методам моделирования сезонных и циклических колебаний относятся:
1) метод вычисления сезонной компоненты и построение аддитивной или мультипликативной модели временного ряда;
2) метод применения сезонных фиктивных переменных;
3) метод анализа сезонных колебаний с помощью автокорреляционной функции;
4) метод, основанный на использовании одномерных рядов Фурье.
В связи с тем, что моделирование сезонных и циклических колебаний происходит аналогично, применение данных методов мы будем рассматривать на примере моделирования сезонных колебаний.
Аддитивная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний не меняется во времени:
yt=Tt+St+
где T – это трендовая компонента;
S – это сезонная компонента;
– случайный шум.
Мультипликативная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний изменяется во времени:
yt=Tt*St+
Предположим, что задача состоит в исследовании временного ряда Xij, где i – это номер сезона (периода времени внутри года, например, месяца или квартала),
L – число сезонов в году, j – номер года,
m – общее количество лет. Количество уровней исходного временного ряда равно n=L*m.
Прежде чем рассчитывать сезонную компоненту, исходный временной ряд необходимо выровнять. Для этого применяются методы механического выравнивания, к которым относятся:
1) метод скользящих средних;
2) метод экспоненциального сглаживания;
3) метод медианного сглаживания и др.
Результатом процедуры сглаживания
будет временной ряд выровненных значений
не содержащих сезонной компоненты.
Если временной ряд представлен аддитивной моделью, то в качестве сезонной компоненты используется показатель абсолютного отклонения – Sai. Сумма всех сезонных компонент, т.е. показателей абсолютных отклонений Sai. должна быть равна нулю.
Если временной ряд представлен мультипликативной моделью, то в качестве сезонной компоненты используется индекс сезонности – Isi. Произведение всех сезонных компонент, т. е. индексов сезонности Isi, должно быть равно единице.
Показатель абсолютного отклонения в i-том сезоне рассчитывается как среднее арифметическое из отклонений фактического и выровненного уровней временного ряда:
Индекс сезонности в i-том сезоне рассчитывается как среднее арифметическое из отношений фактического уровня временного ряда к выровненному:
Если при построении аддитивной модели временного ряда сумма всех абсолютных отклонений не равна нулю, то рассчитываются скорректированные значения сезонных компонент по формуле:
где L – общее количество сезонных компонент.
На следующем этапе построения модели временного ряда осуществляется расчёт трендовой компоненты с помощью метода аналитического выравнивания функциями времени или кривыми роста. Данный метод выравнивания применяют не к исходному временному ряду, а к временному ряду с исключённой сезонной компонентой. При этом уровни исходного временного ряда корректируются на величину сезонной компоненты следующим образом:
1) для аддитивной модели из исходных уровней вычитаются показатели абсолютных отклонений Sai;
2) для мультипликативной модели уровни исходного временного ряда делятся на индексы сезонности Isi.