Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры эконометрика хорошие.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
353.89 Кб
Скачать

40. Мультипликативная модель сезонной компоненты временного ряда

Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Мультипликативная модель оценивает периодическую компоненту в относительных формах

Ŷt= Ŷt /ŝt*K ŝt*Et

Для построения мультипликативной модели временного ряда необходимо выполнить тот же комплекс операций, который предусмотрен для аддитивной модели, меняется только порядок действий и техника выполнения параметров

T

yt

Yt/st

Kst

Ḱ(с крышечкой)st

Ḱst скорр

Yt/Ḱst= Yt/ Ḱst скорр

Ŷt/ Kst

Ŷt

E

1

2

3

4

5

6

7=2/6

8

9

10

1,2,3..

По уравнениям

Ŷ1/ Kst

Ŷ2/ Kst

Kst=yt/(yt/st)

Ḱ, считаем, как и в аддитивной модели Ŝt, т.е. суммируем все Kst( по кварталам, если данные по кварталам и по месяцам, если данные по месяцам).

Соответственно, в сумме они должны дать либо 4 либо 12 ( в зависимости от типа данных – кварталы или месяцы), но мы так не получим, а, следовательно, необходимо скорректировать – определяем поправочный коэффициент Z

Z=4/∑ Ḱ или 12/∑ Ḱ

Затем считаем скорректированный Ḱскорр= Ḱ*Z

41. Коэффициенты сезонности (исходные, средние, средние скорректированные)

К основным методам моделирования сезонных и циклических колебаний относятся:

1) метод вычисления сезонной компоненты и построение аддитивной или мультипликативной модели временного ряда;

2) метод применения сезонных фиктивных переменных;

3) метод анализа сезонных колебаний с помощью автокорреляционной функции;

4) метод, основанный на использовании одномерных рядов Фурье.

В связи с тем, что моделирование сезонных и циклических колебаний происходит аналогично, применение данных методов мы будем рассматривать на примере моделирования сезонных колебаний.

Аддитивная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний не меняется во времени:

yt=Tt+St+

где T – это трендовая компонента;

– это сезонная компонента;

  – случайный шум.

Мультипликативная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний изменяется во времени:

yt=Tt*St+

Предположим, что задача состоит в исследовании временного ряда Xij, где i – это номер сезона (периода времени внутри года, например, месяца или квартала),

L – число сезонов в году, j – номер года,

m – общее количество лет. Количество уровней исходного временного ряда равно n=L*m.

Прежде чем рассчитывать сезонную компоненту, исходный временной ряд необходимо выровнять. Для этого применяются методы механического выравнивания, к которым относятся:

1) метод скользящих средних;

2) метод экспоненциального сглаживания;

3) метод медианного сглаживания и др.

Результатом процедуры сглаживания будет временной ряд выровненных значений

не содержащих сезонной компоненты.

Если временной ряд представлен аддитивной моделью, то в качестве сезонной компоненты используется показатель абсолютного отклонения – Sai. Сумма всех сезонных компонент, т.е. показателей абсолютных отклонений Sai. должна быть равна нулю.

Если временной ряд представлен мультипликативной моделью, то в качестве сезонной компоненты используется индекс сезонности – Isi. Произведение всех сезонных компонент, т. е. индексов сезонности Isi, должно быть равно единице.

Показатель абсолютного отклонения в i-том сезоне рассчитывается как среднее арифметическое из отклонений фактического и выровненного уровней временного ряда:

Индекс сезонности в i-том сезоне рассчитывается как среднее арифметическое из отношений фактического уровня временного ряда к выровненному:

Если при построении аддитивной модели временного ряда сумма всех абсолютных отклонений не равна нулю, то рассчитываются скорректированные значения сезонных компонент по формуле:

где L – общее количество сезонных компонент.

На следующем этапе построения модели временного ряда осуществляется расчёт трендовой компоненты с помощью метода аналитического выравнивания функциями времени или кривыми роста. Данный метод выравнивания применяют не к исходному временному ряду, а к временному ряду с исключённой сезонной компонентой. При этом уровни исходного временного ряда корректируются на величину сезонной компоненты следующим образом:

1) для аддитивной модели из исходных уровней вычитаются показатели абсолютных отклонений Sai;

2) для мультипликативной модели уровни исходного временного ряда делятся на индексы сезонности Isi.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]