
- •Вопрос 1 Множество рациональных чисел
- •Вопрос 2
- •Аксиома непрерывности
- •Вопрос 3 Непрерывность по Дедекинду
- •Вопрос 4
- •Используемые определения
- •[Править]Определения
- •[Править]Замечание
- •Вопрос 5 Десятичная запись вещественного числа
- •Вопрос 6
- •Вопрос 7
- •Вопрос 8 Вещественный логарифм
- •Вопрос 9
- •Определение
- •Вопрос 10 Свойства [править]Арифметические свойства
- •[Править]Свойства сохранения порядка
- •Вопрос 11
- •Вопрос 12 Предел суммы, разности, произведения и частного двух последовательностей
- •Вопрос 13 Предел монотонной последовательности
- •Часть 1. Пусть ограниченны сверху, т.Е. Такое, что . Тогда, согласно теореме о существовании супремума мы можем утверждать, что .
- •Часть 2. Пусть теперь неограниченна сверху. Это значит, что .
- •Лемма о вложенных отрезках
- •Вопрос 14 Число e
- •Вопрос 15
- •Вопрос 16
- •Вопрос 17
- •Вопрос 18 Основные элементарные функции. Элементарные функции
- •Вопрос 19
- •Вопрос 20
- •Вопрос 21
- •Вопрос 22
- •Вопрос 23
- •Вопрос 24
- •Вопрос 25
- •Вопрос 26
- •Вопрос 27 Первый замечательный предел
- •Вопрос 28 Второй замечательный предел
- •Вопрос 29
- •Вопрос 30
- •Вопрос 31
- •Вопрос 32
- •Вопрос 33
- •Вопрос 34
- •Вопрос 35
- •Вопрос 36
- •Вопрос 37
- •Вопрос 40
- •Вопрос 41
- •Вопрос 42
- •Вопрос 43
- •Вопрос 44 Основные теоремы дифференциального исчисления
- •Вопрос 45 Производные и дифференциалы высших порядков
- •Вопрос 46
Вопрос 32
Теорема
1.
Сумма непрерывных функций есть функция
непрерывная.
Доказательство.
Пусть функции
и
непрерывны в точке a.
Тогда
Согласно свойству пределов функций существование пределов функций и гарантирует существование предела их суммы. При этом
что и требовалось доказать. Свойство. Сумма конечного числа непрерывных функций есть функция непрерывная. Доказательство. Каждую пару непрерывных функций можно заменить одной непрерывной функцией. Затем каждую пару полученных непрерывных функций можно заменить одной непрерывной функцией. В конечном итоге останется одна непрерывная функция.
Теорема 2. Произведение непрерывных функций есть функция непрерывная. Свойство. Произведение конечного числа непрерывных функций есть функция непрерывная. Теорема 3. Частное от деления непрерывных функций есть функция непрерывная – за исключением точек, в которых знаменатель обращается в нуль. Доказательство теорем 2 и 3 по своей сути не отличается от доказательства теоремы 1 и предоставляется читателю.
Вопрос 33
Пусть функция (t) непрерывна в точке t0 и функция f(x) непрерывна в точке х0=(t0). Тогда функция f((t)) непрерывна в точке t0.
Доказательство.
Для доказательства этой теоремы воспользуемся формальным преобразованием двух строчек кванторов. Имеем
Выписывая подчеркнутые кванторы, получим, что
,
что и говорит о том, что f((t)) непрерывна в точке t0.
Обратите внимание на следующие детали:
а) т.к. x=(t), то |(t)-(t0)|< может быть записано как |x-x0|<, и f(x) превращается в F((t));
б)
при определении непрерывности (t) в
точке t0 в
первом кванторе стоит буква .
Это необходимо для согласования с
квантором
в
предыдущей строке и взаимного
уничтожения
.
Любая другая буква на этом месте не дала
бы верного результата.
Вопрос 34
Классификация точек разрыва функции Все точки разрыва функции разделяются на точки разрыва первого и второго рода. Говорят, что функция f (x) имеет точку разрыва первого рода при x = a, если в это точке
При этом возможно следующие два случая:
Такая точка называется точкой устранимого разрыва.
Такая
точка называется точкой
конечного разрыва.
Модуль разности значений односторонних
пределов Функция f (x) имеет точку разрыва второго рода при x = a, если по крайней мере один из односторонних пределов не существует или равен бесконечности. |
Пример 1 |
|
Исследовать
функцию Решение. Данная функция не определена в точках x = −1 и x = 1. Следовательно, функция имеет разрывы в точкахx = ±1. Чтобы определить тип разрыва, вычислим односторонние пределы в этих точках. Поскольку левосторонний предел при x = −1 равен бесконечности, то данная точка является точкой разрыва второго рода. Аналогично, левосторонний предел в точке x = 1 равен бесконечности. Эта точка также является точкой разрыва второго рода. |