Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.76 Mб
Скачать

Вопрос 24

Вопрос 25

Свойства пределов функции

1) Предел постоянной величины

Предел постоянной величины равен самой постоянной величине:

2) Предел суммы

Предел суммы двух функций равен сумме пределов этих функций:

Аналогично предел разности двух функций равен разности пределов этих функций.

Расширенное свойство предела суммы:

Предел суммы нескольких функций равен сумме пределов этих функций:

Аналогично предел разности нескольких функций равен разности пределов этих функций.

3) Предел произведения функции на постоянную величину

Постоянный коэффициэнт можно выносить за знак предела:

4) Предел произведения

Предел произведения двух функций равен произведению пределов этих функций:

Расширенное свойство предела произведения

Предел произведения нескольких функций равен произведению пределов этих функций:

5) Предел частного

Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:

Вопрос 26

1. Пусть  .

Рассмотрим последовательность  . О пределе этой последовательности заранее ничего определенного сказать нельзя, как это показывают конкретные примеры.

Если   

если    

если    

если   и предел этой последовательности не существует.

Таким образом, для нахождения предела   недостаточно знать, что  . Нужны  еще дополнительные сведения о характере изменения   и  . Для нахождения этого предела в каждом конкретном случае требуются специальные приемы.

Говорят, что выражение   при  ,   представляет собой неопределенность вида  .

2. Если   , то выражение   также представляет собой неопределенность и ее называют неопределенностью вида  .

3. Если   ,  , то для выражения   получаем неопределенность вида  .

4. Если  , то выражение   представляет неопределенность вида .

Вопрос 27 Первый замечательный предел

Доказательство

Рассмотрим односторонние пределы   и   и докажем, что они равны 1.

Пусть  . Отложим этот угол на единичной окружности ( ).

Точка K — точка пересечения луча с окружностью, а точка L — с касательной к единичной окружности в точке  . Точка H — проекция точкиK на ось OX.

Очевидно, что:

 (1)

(где   — площадь сектора  )

(из  )

Подставляя в (1), получим:

Так как при  :

Умножаем на  :

Перейдём к пределу:

Найдём левый односторонний предел:

Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.

Вопрос 28 Второй замечательный предел

 или 

Доказательство второго замечательного предела:

Доказательство для натуральных значений

  Докажем вначале теорему для случая последовательности 

По формуле бинома Ньютона

Полагая  , получим:

       (1)

Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число   убывает, поэтому величины   возрастают. Поэтому последовательность   — возрастающая, при этом

      (2).

Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство

Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:

.

Сумму в скобке найдём по формуле суммы членов геометрической прогрессии:

.

Поэтому        (3).

Итак, последовательность ограничена сверху, при этом   выполняются неравенства (2) и (3):    .

Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность   монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.   

   Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что  . Рассмотрим два случая:

1. Пусть  . Каждое значение x заключено между двумя положительными целыми числами:  , где   — это целая часть x.

Отсюда следует:  , поэтому

.

Если  , то  . Поэтому, согласно пределу  , имеем:

.

По признаку (о пределе промежуточной функции) существования пределов  .

2. Пусть  . Сделаем подстановку  , тогда

.

Из двух этих случаев вытекает, что   для вещественного x. 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]