
- •Вопрос 1 Множество рациональных чисел
- •Вопрос 2
- •Аксиома непрерывности
- •Вопрос 3 Непрерывность по Дедекинду
- •Вопрос 4
- •Используемые определения
- •[Править]Определения
- •[Править]Замечание
- •Вопрос 5 Десятичная запись вещественного числа
- •Вопрос 6
- •Вопрос 7
- •Вопрос 8 Вещественный логарифм
- •Вопрос 9
- •Определение
- •Вопрос 10 Свойства [править]Арифметические свойства
- •[Править]Свойства сохранения порядка
- •Вопрос 11
- •Вопрос 12 Предел суммы, разности, произведения и частного двух последовательностей
- •Вопрос 13 Предел монотонной последовательности
- •Часть 1. Пусть ограниченны сверху, т.Е. Такое, что . Тогда, согласно теореме о существовании супремума мы можем утверждать, что .
- •Часть 2. Пусть теперь неограниченна сверху. Это значит, что .
- •Лемма о вложенных отрезках
- •Вопрос 14 Число e
- •Вопрос 15
- •Вопрос 16
- •Вопрос 17
- •Вопрос 18 Основные элементарные функции. Элементарные функции
- •Вопрос 19
- •Вопрос 20
- •Вопрос 21
- •Вопрос 22
- •Вопрос 23
- •Вопрос 24
- •Вопрос 25
- •Вопрос 26
- •Вопрос 27 Первый замечательный предел
- •Вопрос 28 Второй замечательный предел
- •Вопрос 29
- •Вопрос 30
- •Вопрос 31
- •Вопрос 32
- •Вопрос 33
- •Вопрос 34
- •Вопрос 35
- •Вопрос 36
- •Вопрос 37
- •Вопрос 40
- •Вопрос 41
- •Вопрос 42
- •Вопрос 43
- •Вопрос 44 Основные теоремы дифференциального исчисления
- •Вопрос 45 Производные и дифференциалы высших порядков
- •Вопрос 46
Вопрос 24
Вопрос 25
Свойства пределов функции
1) Предел постоянной величины
Предел постоянной величины равен самой постоянной величине:
2) Предел суммы
Предел суммы двух функций равен сумме пределов этих функций:
Аналогично предел разности двух функций равен разности пределов этих функций.
Расширенное свойство предела суммы:
Предел суммы нескольких функций равен сумме пределов этих функций:
Аналогично предел разности нескольких функций равен разности пределов этих функций.
3) Предел произведения функции на постоянную величину
Постоянный коэффициэнт можно выносить за знак предела:
4) Предел произведения
Предел произведения двух функций равен произведению пределов этих функций:
Расширенное свойство предела произведения
Предел произведения нескольких функций равен произведению пределов этих функций:
5) Предел частного
Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:
Вопрос 26
1.
Пусть
.
Рассмотрим
последовательность
.
О пределе этой последовательности
заранее ничего определенного сказать
нельзя, как это показывают конкретные
примеры.
Если
если
если
если
и
предел этой последовательности не
существует.
Таким
образом, для нахождения предела
недостаточно
знать, что
,
.
Нужны еще дополнительные сведения
о характере изменения
и
.
Для нахождения этого предела в каждом
конкретном случае требуются специальные
приемы.
Говорят,
что выражение
при
,
представляет
собой неопределенность вида
.
2.
Если
,
,
то выражение
также
представляет собой неопределенность
и ее называют неопределенностью вида
.
3.
Если
,
,
то для выражения
получаем
неопределенность вида
.
4.
Если
,
,
то выражение
представляет
неопределенность вида
.
Вопрос 27 Первый замечательный предел
Доказательство
Рассмотрим односторонние
пределы
и
и
докажем, что они равны 1.
Пусть
.
Отложим этот угол на единичной окружности
(
).
Точка K —
точка пересечения луча с окружностью,
а точка L —
с касательной к единичной окружности
в точке
.
Точка H —
проекция точкиK на
ось OX.
Очевидно, что:
(1)
(где
—
площадь сектора
)
(из
:
)
Подставляя в (1), получим:
Так
как при
:
Умножаем
на
:
Перейдём к пределу:
Найдём левый односторонний предел:
Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.
Вопрос 28 Второй замечательный предел
или
Доказательство второго замечательного предела:
Доказательство для натуральных значений
Докажем
вначале теорему для случая
последовательности
По
формуле бинома
Ньютона:
Полагая
,
получим:
(1)
Из
данного равенства (1) следует, что с
увеличением n число положительных
слагаемых в правой части увеличивается.
Кроме того, при увеличении n число
убывает,
поэтому величины
возрастают.
Поэтому последовательность
— возрастающая,
при этом
(2).
Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство
Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:
.
Сумму в скобке найдём по формуле суммы членов геометрической прогрессии:
.
Поэтому
(3).
Итак,
последовательность ограничена сверху,
при этом
выполняются
неравенства (2) и (3):
.
Следовательно,
на основании теоремы Вейерштрасса
(критерий сходимости последовательности)
последовательность
монотонно
возрастает и ограниченна, значит имеет
предел, обозначаемый буквой e.
Т.е.
Зная,
что второй замечательный предел верен
для натуральных значений x, докажем
второй замечательный предел для
вещественных x, то есть докажем, что
.
Рассмотрим два случая:
1.
Пусть
.
Каждое значение x заключено между двумя
положительными целыми числами:
,
где
—
это целая часть x.
Отсюда
следует:
,
поэтому
.
Если
,
то
.
Поэтому, согласно пределу
,
имеем:
.
По
признаку (о пределе промежуточной
функции) существования пределов
.
2.
Пусть
.
Сделаем подстановку
,
тогда
.
Из двух этих случаев вытекает, что для вещественного x.