
- •33. Метод еквівалентних перетворень, його сутність.
- •34. Компонентні та топологічні рівняння в операторній формі.
- •36.Основні відомості про сигнали
- •39.Закони Кірхгофа
- •40.Диференційні рівняння кіл першого та другого порядків.
- •41.Баланс потужностей
- •42.Етапи аналізу перехідних процесів класичним методом
- •43.Послідовне , паралельне та змішане з’єднання елементів електричного кола.
- •44.Вимушена складова та особливості іі обчислення на прикладі rc- та rl-кіл при дії постійних сигналів.
- •46.Типи коренів характеристичного рівняння та відповідний вид власних коливань
- •47.Теореми про еквівалентне джерело напруги та струму
- •48.Діаграма коренів та стійкість електричного кола
46.Типи коренів характеристичного рівняння та відповідний вид власних коливань
Однорідне
рівняння :
корені дійсні і різні,
тобто йде процес монотонного затухання , коливань немає
корені комплексні,
– синусоїдальні
коливання
корені комплексно-спряжені –
,
– маємо
затухаючі (або навпаки) синусоїдальні
коливання.
47.Теореми про еквівалентне джерело напруги та струму
Теорема
Тевенена: будь-яку
активну частину лінійного електричного
кола по відношенню до пасивного
двополюсника можна еквівалентно замінити
на джерело напруги з послідовно з’єднаним
резистивним двополюсником, де
- напруга холостого ходу гілки, де є
,
а
- опір
в режимі холостого ходу гілки з
при вилученні всіх джерел
Теорема
Нортона: будь-яку
активну частину лінійного активного
кола по відношенню до пасивного
двополюсника можна еквівалентно замінити
на джерело струму з паралельно з’єднаним
резистивним двополюсником, де
–струм
короткого замикання гілки, де є
.
48.Діаграма коренів та стійкість електричного кола
Коло нестійке, якщо з часом миттєві значення вільної реакції
необмежено збільшуються. Це відбувається тоді коли хоча б один дійсний корінь характеристичного рівняння чи дійсна частина одного з комплексних коренів набуде додатного значення.
Коло обмеженостійке, якщо вільна складова з часом не зростає, тобто не перевищує деякого рівня (характ. Рівняння має простий нульовий корінь або прості уявні), і абсолютно стійким, якщо вона з часом прямує до нуля (характеристичне р-ня має дійсні від ємні, комплексні з від ємними ненульовими дійними частинами)
Діаграма
коренів – графічне зображення значень
коренів на комплексній площині з уявною
ОУ та дійсною ОХ осями. Значенням коренів
відповідає позначка «
»
Для стійкого кола усі корені характ. Р-ня розміщені на уявній осі (ОУ) та ліворуч від неї, причому корені, що лежать на уявній осі, не можуть бути кратними.